Featured Research

from universities, journals, and other organizations

Seeing things: A new transparent display system could provide heads-up data

Date:
January 21, 2014
Source:
Massachusetts Institute of Technology
Summary:
Scientists have developed a new approach to produce transparent projection screens. Their result paves the way for a new class of transparent displays with many attractive features, including wide viewing angle, scalability to large size, and low cost.

The secret to the new system: Nanoparticles are embedded in the transparent material. These tiny particles can be tuned to scatter only certain wavelengths, or colors, or light, while letting all the rest pass right through. That means the glass remains transparent enough to see colors and shapes clearly through it, while a single-color display is clearly visible on the glass.
Credit: Still image from video courtesy of Chia Wei Hsu and Bo Zhen / MIT

Transparent displays have a variety of potential applications -- such as the ability to see navigation or dashboard information while looking through the windshield of a car or plane, or to project video onto a window or a pair of eyeglasses. A number of technologies have been developed for such displays, but all have limitations.

Now, researchers at MIT have come up with a new approach that can have significant advantages over existing systems, at least for certain kinds of applications: a wide viewing angle, simplicity of manufacture, and potentially low cost and scalability.

The innovative system is described in a paper published this week in the journal Nature Communications, co-authored by MIT professors Marin Soljačić and John Joannopoulos, graduate student Chia Wei Hsu, and four others.

Many current "heads-up" display systems use a mirror or beam-splitter to project an image directly into the user's eyes, making it appear that the display is hovering in space somewhere in front of him. But such systems are extremely limited in their angle of view: The eyes must be in exactly the right position in order to see the image at all. With the new system, the image appears on the glass itself, and can be seen from a wide array of angles.

Other transparent displays use electronics directly integrated into the glass: organic light-emitting diodes for the display, and transparent electronics to control them. But such systems are complex and expensive, and their transparency is limited.

The secret to the new system: Nanoparticles are embedded in the transparent material. These tiny particles can be tuned to scatter only certain wavelengths, or colors, or light, while letting all the rest pass right through. That means the glass remains transparent enough to see colors and shapes clearly through it, while a single-color display is clearly visible on the glass.

To demonstrate the system, the team projected a blue image in front of a scene containing cups of several colors, all of which can clearly be seen through the projected image.

While the team's demonstration used silver nanoparticles -- each about 60 nanometers across -- that produce a blue image, they say it should be possible to create full-color display images using the same technique. Three colors (red, green, and blue) are enough to produce what we perceive as full-color, and each of the three colors would still show only a very narrow spectral band, allowing all other hues to pass through freely.

"The glass will look almost perfectly transparent," Soljačić says, "because most light is not of that precise wavelength" that the nanoparticles are designed to scatter. That scattering allows the projected image to be seen in much the same way that smoke in the air can reveal the presence of a laser beam passing through it.

Such displays might be used, for example, to project images onto store windows while still allowing passersby to see clearly the merchandise on display inside, or to provide heads-up windshield displays for drivers or pilots, regardless of viewing angle.

Soljačić says that his group's demonstration is just a proof-of-concept, and that much work remains to optimize the performance of the system. Silver nanoparticles, which are commercially available, were selected for the initial testing because it was "something we could do very simply and cheaply," Soljačić says. The team's promising results, even without any attempt to optimize the materials, "gives us encouragement that you could make this work better," he says.

The particles could be incorporated in a thin, inexpensive plastic coating applied to the glass, much as tinting is applied to car windows. This would work with commercially available laser projectors or conventional projectors that produce the specified color.

"This is a very clever idea using the spectrally selective scattering properties of nanoparticles to create a transparent display," says Shanhui Fan, a professor of electrical engineering at Stanford University who was not involved in this work. "I think it is a beautiful demonstration."

The work, which also included MIT graduate student Bo Zhen, recent PhD recipient Wenjun Qiu, MIT affiliate Ofer Shapira, and Brendan Lacey of the U.S. Army Edgewood Chemical Biological Center, was supported by the Army Research Office and the National Science Foundation.

Video: http://www.youtube.com/watch?v=0aw58MUciWw#t=35


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. The original article was written by David L. Chandler. Note: Materials may be edited for content and length.


Journal Reference:

  1. Chia Wei Hsu, Bo Zhen, Wenjun Qiu, Ofer Shapira, Brendan G. DeLacy, John D. Joannopoulos, Marin Soljačić. Transparent displays enabled by resonant nanoparticle scattering. Nature Communications, 2014; 5 DOI: 10.1038/ncomms4152

Cite This Page:

Massachusetts Institute of Technology. "Seeing things: A new transparent display system could provide heads-up data." ScienceDaily. ScienceDaily, 21 January 2014. <www.sciencedaily.com/releases/2014/01/140121113436.htm>.
Massachusetts Institute of Technology. (2014, January 21). Seeing things: A new transparent display system could provide heads-up data. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2014/01/140121113436.htm
Massachusetts Institute of Technology. "Seeing things: A new transparent display system could provide heads-up data." ScienceDaily. www.sciencedaily.com/releases/2014/01/140121113436.htm (accessed October 20, 2014).

Share This



More Matter & Energy News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Gulfstream G500, G600 Unveiling

Gulfstream G500, G600 Unveiling

Flying (Oct. 20, 2014) Watch Gulfstream's public launch of the G500 and G600 at their headquarters in Savannah, Ga., along with a surprise unveiling of the G500, which taxied up under its own power. Video provided by Flying
Powered by NewsLook.com
Japanese Scientists Unveil Floating 3D Projection

Japanese Scientists Unveil Floating 3D Projection

Reuters - Innovations Video Online (Oct. 20, 2014) Scientists in Tokyo have demonstrated what they say is the world's first 3D projection that floats in mid air. A laser that fires a pulse up to a thousand times a second superheats molecules in the air, creating a spark which can be guided to certain points in the air to shape what the human eye perceives as an image. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

3BL Media (Oct. 20, 2014) Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-fuel Impala Video provided by 3BL
Powered by NewsLook.com
What We Know About Microsoft's Rumored Smartwatch

What We Know About Microsoft's Rumored Smartwatch

Newsy (Oct. 20, 2014) Microsoft will reportedly release a smartwatch that works across different mobile platforms, has a two-day battery life and tracks heart rate. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins