Featured Research

from universities, journals, and other organizations

Unlocking the brain's secrets using sound

Date:
January 21, 2014
Source:
American Technion Society
Summary:
Scientists might be on the verge of finally understanding how ultrasound affects nerve cells. The breakthrough could lead the way to important new medical advances, including the noninvasive treatment of epileptic seizures and restoration of sight.

The brain is a reclusive organ. Neurons -- the cells that make up the brain, nerves, and spinal cord -- communicate with each other using electrical pulses known as action potentials, but their interactions are complicated and hard to understand. Just getting access to the brain itself is difficult: inserting devices through the skull into the brain requires surgery. But work by Technion Professors Eitan Kimmel and Shy Shoham, and Ph.D. student Misha Plaksin, may advance our ability to unlock the brain's secrets noninvasively using sound, and perhaps create new treatments for illnesses. The findings were published January 21, 2014 in Physical Review X.

Related Articles


Scientists have known for a while that ultrasonic waves can affect cells in many ways. For instance, physicians use ultrasound to stimulate the production of blood vessels and bone; it's also used in heat therapy. When applied to neurons, ultrasonic waves can change how the neurons generate and transmit electrical signals. "Ultrasound is known to do all kinds of things in cells," says Prof. Kimmel, "but how it works in many cases isn't clear, particularly when it comes to neural stimulation."

A new model may help clarify much of this behavior. This new way of understanding the interaction of sound waves and cells relies on the cellular membrane. This microscopic structure is the skin that surrounds a cell, keeping the organelles -- like the nucleus and the DNA it contains -- in, and the rest of the world out. The molecules that form the membrane are arranged in such a way that there are two layers, with a space between them. According to Kimmel's model, when the ultrasonic waves encounter a cell, the two layers of the cellular membrane begin to vibrate (much like how a person's vocal cords vibrate when air passes through the larynx). Cell membranes also act as capacitors, storing electrical charge. As the layers vibrate, the membrane's electrical charge also moves, creating an alternating current that leads to a charge accumulation. The longer the vibrations continue, the more charge builds up in the membrane. Eventually, enough charge builds up that an action potential is created.

The Technion team was able to use the model to predict experimental results that were then verified using brain stimulation experiments performed in mice by a team at Stanford University. According to Prof. Shoham, this is "the first predictive theory of ultrasound stimulation." All of these results mean that scientists might be on the verge of finally understanding how ultrasound affects nerve cells.

And this new understanding could lead to important new medical advances. For example, scientists could use ultrasonic waves to probe the brain's internal structure, a non-invasive technique that would be safer than implanting electrodes and complement the information produced by MRI scans. Physicians could also conceivably use ultrasound to treat epileptic seizures. And Shoham has begun studying the ways in which ultrasonic waves could stimulate cells in the retina, possibly creating images and letting people see without light. "There is great potential for additional applications," says Kimmel.

The Technion team's findings also illustrate how important it is to get a theoretical understanding of things in nature. After all, says Shoham, "there's only so much you can do with effects you don't understand."


Story Source:

The above story is based on materials provided by American Technion Society. Note: Materials may be edited for content and length.


Journal Reference:

  1. Michael Plaksin, Shy Shoham, Eitan Kimmel. Intramembrane Cavitation as a Predictive Bio-Piezoelectric Mechanism for Ultrasonic Brain Stimulation. Physical Review X, 2014; 4 (1) DOI: 10.1103/PhysRevX.4.011004

Cite This Page:

American Technion Society. "Unlocking the brain's secrets using sound." ScienceDaily. ScienceDaily, 21 January 2014. <www.sciencedaily.com/releases/2014/01/140121130032.htm>.
American Technion Society. (2014, January 21). Unlocking the brain's secrets using sound. ScienceDaily. Retrieved November 21, 2014 from www.sciencedaily.com/releases/2014/01/140121130032.htm
American Technion Society. "Unlocking the brain's secrets using sound." ScienceDaily. www.sciencedaily.com/releases/2014/01/140121130032.htm (accessed November 21, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, November 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

WFP: Ebola Risks Heightened Among Women Throughout Africa

WFP: Ebola Risks Heightened Among Women Throughout Africa

AFP (Nov. 21, 2014) Having children has always been a frightening prospect in Sierra Leone, the world's most dangerous place to give birth, but Ebola has presented an alarming new threat for expectant mothers. Duration: 00:37 Video provided by AFP
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Milestone Birthdays Can Bring Existential Crisis, Study Says

Milestone Birthdays Can Bring Existential Crisis, Study Says

Newsy (Nov. 21, 2014) Researchers find that as people approach new decades in their lives they make bigger life decisions. Video provided by Newsy
Powered by NewsLook.com
Ebola: Life Without School in Guinea

Ebola: Life Without School in Guinea

AFP (Nov. 21, 2014) Following the closure of schools and universities in Guinea because of the Ebola virus, students look for temporary work or gather in makeshift classrooms to catch up on their syllabus. Duration: 02:14 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins