Featured Research

from universities, journals, and other organizations

Injectable material could enable targeted drug delivery, biosensors

Date:
January 22, 2014
Source:
Texas A&M University
Summary:
A new injectable material designed to deliver drug therapies and sensor technology to targeted areas within the human body is being developed by a biomedical engineer who says the system can lock its payload in place and control how it is released.

Professor Mike McShane (left) and graduate students Jason Roberts and Dustin Ritter (not pictured) are developing a carrier system that can deliver medicines and biosensors to targeted areas of the body.
Credit: Texas A&M University

A new injectable material designed to deliver drug therapies and sensor technology to targeted areas within the human body is being developed by a Texas A&M University biomedical engineer who says the system can lock its payload in place and control how it is released.

The research, led by Michael McShane, professor in the Department of Biomedical Engineering who specializes in biomaterials, and graduate student Jason Roberts, appears in Journal of Materials Chemistry B. It details the development of a carrier system embedded with microscopic capsules that act as tiny reservoirs for medicines or even sensors that would alert a person in critical instances, such as when blood-sugar levels change.

The technology, McShane notes, affords researchers a high degree of control over what is delivered to the body, where and when it is delivered and how much of it is delivered. That degree of flexibility, he says, could make the system an extremely useful tool when it comes to targeted drug delivery.

As opposed to having patients simply swallow a pill, health care professionals have long envisioned delivering specific quantities of medicines to targeted areas of the body, thereby increasing the treatment's effectiveness while reducing side effects. In order to achieve this, a "vehicle" of sorts is needed to safely and accurately deliver the medicine to the desired location within the body.

McShane's team, which also includes graduate student Dustin Ritter, is building that vehicle using a modified Jell-O-like substance known as a hydrogel. A hydrogel is a polymer mesh material that is typically biocompatible, meaning it allows cells within the body to conduct normal physiological processes without triggering an immune response from the host. Because of this, hydrogels are widely used in tissue engineering research, and they can be found in a number of other applications, most commonly as the material from which contact lenses are made.

Although hydrogels aren't new, the ones employed in McShane's carrier system aren't typical; they've been enhanced. Specifically, they are embedded with tiny capsules that are significantly smaller than the width of a human hair. Each of these microcapsules serves as a reservoir or depot for the material doctors and researchers want to deliver, such as a drug.

Measuring a few microns in diameter, these porous microparticles are made from clusters of calcium carbonate nanoparticles that have been deliberately formed around a specific material to trap it inside, McShane notes. Once the desired material is trapped within the microsphere, multiple layers of polymers are wrapped around the particles, he explains. This allows for a precise and customizable control over how the microcapsule will release its contents when it interacts with its surrounding environment, McShane explains.

The system, McShane says, is not limited to drug delivery. In fact, it has shown promising results with biosensors. In these types of applications, he explains, the microcapsules carry a payload, such as a protein, that is responsive to something in the body that doctors want to measure. This measurable material is allowed to pass into the hydrogel and into the capsules where it triggers some type of optical change, he says. For example, McShane has been able to trigger a color change in the material (observable with a reader device) when pH and oxygen levels change or when blood-sugar levels fluctuate. It's work that could translate into safer and more effective ways for people, such as those suffering from diabetes, to monitor their conditions.

"Through chemistry, we can design these microcapsules so that what we put inside of them stays inside of them or what we put inside of them is released when we want it to be released -- all at once or gradually," he says.

The microcapsules also play another critical role in the system -- helping to transform the hydrogel from a liquid to a gel once it is inside the body, McShane notes. In order to be easily administered, McShane's carrier system starts as a liquid with tiny solid suspended particles. This allows it to be injected into the desired location, transporting the microcapsules and their contents. By manipulating the chemical reactions that take place between the microcapsules and the hydrogel -- such as calcium release as the particles dissolve -- McShane and his team can control how quickly their system turns into a gel.

That's important because the hydrogel helps lock in place the microcapsules at the correct location while also acting as a buffer between them and the body's internal environment. Without the gelation of the carrier system, the microcapsules could be absorbed into the lymph system, broken down by the body and removed before they could release their contents, or they could migrate away from the targeted location, McShane explains.

"Basically, our material starts as a liquid with a bunch of microspheres suspended in it, and we can inject it," he says. "It will then gel wherever we inject it, taking the shape of the mold in which it is placed. This mold could be something we design to give it a certain shape, or it could just be a void in tissue that we're trying to fill with the material.

"It's the combination of controlling the gelation, and then controlling how the microcapsules function that makes this a unique and viable system for a variety of applications."


Story Source:

The above story is based on materials provided by Texas A&M University. The original article was written by Ryan Garcia. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jason R. Roberts, Dustin W. Ritter, Michael J. McShane. A design full of holes: functional nanofilm-coated microdomains in alginate hydrogels. Journal of Materials Chemistry B, 2013; 1 (25): 3195 DOI: 10.1039/C3TB20477D

Cite This Page:

Texas A&M University. "Injectable material could enable targeted drug delivery, biosensors." ScienceDaily. ScienceDaily, 22 January 2014. <www.sciencedaily.com/releases/2014/01/140122112404.htm>.
Texas A&M University. (2014, January 22). Injectable material could enable targeted drug delivery, biosensors. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2014/01/140122112404.htm
Texas A&M University. "Injectable material could enable targeted drug delivery, biosensors." ScienceDaily. www.sciencedaily.com/releases/2014/01/140122112404.htm (accessed July 23, 2014).

Share This




More Matter & Energy News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Government Approves East Coast Oil Exploration

Government Approves East Coast Oil Exploration

AP (July 18, 2014) The Obama administration approved the use of sonic cannons to discover deposits under the ocean floor by shooting sound waves 100 times louder than a jet engine through waters shared by endangered whales and turtles. (July 18) Video provided by AP
Powered by NewsLook.com
Sunken German U-Boat Clearly Visible For First Time

Sunken German U-Boat Clearly Visible For First Time

Newsy (July 18, 2014) The wreckage of the German submarine U-166 has become clearly visible for the first time since it was discovered in 2001. Video provided by Newsy
Powered by NewsLook.com
Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Reuters - US Online Video (July 17, 2014) President Barak Obama stopped by at a lunch counter in Delaware before making remarks about boosting the nation's infrastructure. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

TheStreet (July 16, 2014) Oil Futures are bouncing back after tumbling below $100 a barrel for the first time since May yesterday. Jeff Grossman is the president of BRG Brokerage and trades at the NYMEX. Grossman tells TheStreet the Middle East is always a concern for oil traders. Oil prices were pushed down in recent weeks on Libya increasing its production. Supply disruptions in Iraq fading also contributed to prices falling. News from China's economic front showing a growth for the second quarter also calmed fears on its slowdown. Jeff Grossman talks to TheStreet's Susannah Lee on this and more on the Energy Department's Energy Information Administration (EIA) report. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins