Featured Research

from universities, journals, and other organizations

X-ray diffraction technique 'maps' strain, crack propagation in metallic tubing

Date:
January 22, 2014
Source:
NACE International
Summary:
A team of researchers exploring the intergranular stress corrosion cracking of a type of metallic tubing used within nuclear power plants has developed a technique to both map and predict its propagation.

mage caption: This series of images show the x-ray maps of a crack along the surface of Alloy 500 tubing. In (a), the absorption map shows parts of the physical crack; (b) shows the grain orientations along the crack; (c) shows compressive stresses in blue as a result of the crack opening; (d) shows the crack's propagation path on the tubing via scanning electron micrograph, along with a "trench" created by ion beam for easier imaging of a crack cross section; (e) shows the crack opening.
Credit: University of Western Ontario

A team of researchers exploring the intergranular stress corrosion cracking of a type of metallic tubing used within nuclear power plants has developed a technique to both map and predict its propagation.

Metallic tubing plays a key role in transporting water coolant to steam generators within nuclear power plants. But for reasons that remain elusive, in this application, Alloy 600, a high-strength nickel-based alloy widely used and considered robust in other high-performance situations, is susceptible to costly failure caused by intergranular stress corrosion cracking.

A team of researchers delved into this longstanding technical issue by using an x-ray diffraction technique to measure structural changes within microscopic areas on the metallic tubing, which they describe in a paper in CORROSION journal.

"Failures of Alloy 600 are preceded by mechanical strains, but the location of this type of strain is often a tiny area only a few microns wide, which has been mechanically damaged by a physical process like a micro scratch or a chemical process such as rapid local corrosion," explains Stewart McIntyre, co-author of the paper and an emeritus professor in the Department of Chemistry at the University of Western Ontario in London, Canada.

It's important to "identify the very tiny areas on samples that are under local tensile stresses -- because these stresses can pull a material apart at the boundary between two metal grains," McIntyre says.

To zero in on these areas under local tensile stresses, McIntyre and colleagues turned to a very small and coherent x-ray beam of the sort produced in synchrotrons, such as the Advanced Light Source at Lawrence Berkeley National Laboratory.

"With such facilities we can 'map' the location of strains to determine whether their direction is likely to result in crack propagation in the future," says McIntyre.

Next up? The researchers plan to study the effects of external stresses of different magnitudes imposed on boiler tubing made from Alloy 600, as well as its new replacement, Alloy 690.


Story Source:

The above story is based on materials provided by NACE International. Note: Materials may be edited for content and length.


Journal Reference:

  1. N.S. McIntyre, J. Ulaganathan, T. Simpson, J. Qin, N. Sherry, M. Bauer, A. G. Carcea, R. C. Newman, M. Kunz, N. Tamura. Mapping of Microscopic Strain Distributions in an Alloy 600 C-Ring after Application of Hoop Stresses and Stress Corrosion Cracking. Corrosion, 2013; 130806113143002 DOI: 10.5006/1006

Cite This Page:

NACE International. "X-ray diffraction technique 'maps' strain, crack propagation in metallic tubing." ScienceDaily. ScienceDaily, 22 January 2014. <www.sciencedaily.com/releases/2014/01/140122134319.htm>.
NACE International. (2014, January 22). X-ray diffraction technique 'maps' strain, crack propagation in metallic tubing. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2014/01/140122134319.htm
NACE International. "X-ray diffraction technique 'maps' strain, crack propagation in metallic tubing." ScienceDaily. www.sciencedaily.com/releases/2014/01/140122134319.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com
U.K. To Allow Driverless Cars On Public Roads

U.K. To Allow Driverless Cars On Public Roads

Newsy (July 30, 2014) Driverless cars could soon become a staple on U.K. city streets, as they're set to be introduced to a few cities in 2015. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins