Featured Research

from universities, journals, and other organizations

Long-lived breast stem cells could retain cancer legacy

Date:
January 26, 2014
Source:
Walter and Eliza Hall Institute
Summary:
Researchers have discovered that breast stem cells and their "daughters" have a much longer lifespan than previously thought, and are active in puberty and throughout life.

Breast cancer research team Professor Jane Visvader, Dr Nai Yang Fu, Dr Anne Rios and Professor Geoff Lindeman (left to right) have found that breast stem cells and their 'daughter' progenitor cells are long-lived in the breast.
Credit: Walter and Eliza Hall Institute

Researchers from Melbourne's Walter and Eliza Hall Institute have discovered that breast stem cells and their 'daughters' have a much longer lifespan than previously thought, and are active in puberty and throughout life.

The longevity of breast stem cells and their daughters means that they could harbour genetic defects or damage that progress to cancer decades later, potentially shifting back the timeline of breast cancer development. The finding is also integral to identifying the 'cells of origin' of breast cancer and the ongoing quest to develop new treatments and diagnostics for breast cancer.

Breast stem cells were isolated in 2006 by Professor Jane Visvader and Professor Geoff Lindeman and their colleagues from the ACRF Stem Cells and Cancer division at the Walter and Eliza Hall Institute.

Now, in a project led by Dr Anne Rios and Dr Nai Yang Fu that tracked normal breast stem cells and their development the team has discovered that breast stem cells actively maintain breast tissue for most of the life of the individual and contribute to all major stages of breast development. The research was published today in the journal Nature.

Professor Lindeman, who is also an oncologist at The Royal Melbourne Hospital, said discovering the long lifespan and programming of breast stem cells would have implications for identifying the cells of origin of breast cancers.

"Given that these stem cells -- and their 'daughter' progenitor cells -- can live for such a long time and are capable of self renewing, damage to their genetic code could lead to breast cancer 10 or 20 years later," Professor Lindeman said. "This finding has important applications for our understanding of breast cancer. We hope that it will lead to the development of new treatment and diagnostic strategies in the clinic to help women with breast cancer in the future."

Professor Visvader said understanding the hierarchy and development of breast cells was critical to identifying the cells that give rise to breast cancer, and how and why these cells become cancerous. "Without knowing the precise cell types in which breast cancer originates, we will continue to struggle in our efforts to develop new diagnostics and treatments for breast cancer, or developing preventive strategies," Professor Visvader said.

Previous research from the institute team had already implicated some of these immature breast cells in cancer development. "In 2009, we showed that luminal progenitor cells, the daughters of breast stem cells, were the likely cell of origin for the aggressive BRCA1-associated basal breast cancers," Professor Visvader said. "The meticulous work of Anne and Nai Yang, using state-of-the-art three-dimensional imaging, has significantly improved our understanding of normal breast development and will have future applications for breast cancer."

The project should settle a debate that has been raging in the scientific field, confirming that breast stem cells were 'true' stem cells capable of renewing themselves and making all the cells of the mammary gland.

"Our team was amongst the first to isolate 'renewable' breast stem cells," Professor Visvader said. "However the existence of a common stem cell that can create all the cells lining the breast ducts has been a contentious issue in the field. In this study we've proven that ancestral breast stem cells function in puberty and adulthood and that they give rise to all the different cell types that make up the adult breast."


Story Source:

The above story is based on materials provided by Walter and Eliza Hall Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. Anne C. Rios, Nai Yang Fu, Geoffrey J. Lindeman, Jane E. Visvader. In situ identification of bipotent stem cells in the mammary gland. Nature, 2014; DOI: 10.1038/nature12948

Cite This Page:

Walter and Eliza Hall Institute. "Long-lived breast stem cells could retain cancer legacy." ScienceDaily. ScienceDaily, 26 January 2014. <www.sciencedaily.com/releases/2014/01/140126134651.htm>.
Walter and Eliza Hall Institute. (2014, January 26). Long-lived breast stem cells could retain cancer legacy. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2014/01/140126134651.htm
Walter and Eliza Hall Institute. "Long-lived breast stem cells could retain cancer legacy." ScienceDaily. www.sciencedaily.com/releases/2014/01/140126134651.htm (accessed August 21, 2014).

Share This




More Health & Medicine News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Cadavers, a Teen, and a Medical School Dream

Cadavers, a Teen, and a Medical School Dream

AP (Aug. 21, 2014) Contains graphic content. He's only 17. But Johntrell Bowles has wanted to be a doctor from a young age, despite the odds against him. He was recently the youngest participant in a cadaver program at the Indiana University NW medical school. (Aug. 21) Video provided by AP
Powered by NewsLook.com
Possible Ebola Patient in Isolation at California Hospital

Possible Ebola Patient in Isolation at California Hospital

Reuters - US Online Video (Aug. 20, 2014) A patient who may have been exposed to the Ebola virus is in isolation at the Kaiser Permanente South Sacramento Medical Center. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Reasons Why Teen Birth Rates Are At An All-Time Low

Reasons Why Teen Birth Rates Are At An All-Time Low

Newsy (Aug. 20, 2014) A CDC report says birth rates among teenagers have been declining for decades, reaching a new low in 2013. We look at several popular explanations. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins