Featured Research

from universities, journals, and other organizations

Photon recoil provides new insight into matter: New precision spectroscopy allows unprecedented accuracy

Date:
January 30, 2014
Source:
Physikalisch-Technische Bundesanstalt (PTB)
Summary:
Quantum logic spectroscopy has now been significantly extended: the new method is called "photon-recoil spectroscopy" (PRS). In contrast to the original quantum logic technique, the new method enables the investigation of very fast transitions in atoms or molecules. With this new method, spectroscopic investigations will be possible on nearly any kind of particles.

This is a schematic representation of the experimental set-up for photon-recoil spectroscopy. An auxiliary ion (the logic ion, blue) is trapped in an ion trap together with the ion to be investigated (the spectroscopy ion, red). The logic ion is cooled down to the ground state of motion by means of laser cooling (cooling laser and logic laser). Due to the strong coupling of the two ions, the spectroscopy ion is cooled along with the logic ion. The spectroscopy ion is then excited by means of laser pulses (spectroscopy/repump laser), which puts both ions into motion. This motion represents the spectroscopy signal and can be read out via the logic ion (logic laser, cooling laser) which becomes dark in the event of motion.
Credit: PTB

Quantum logic spectroscopy -- which is closely linked with the name of the 2012 Nobel prize laureate, David J. Wineland -- has been significantly extended: this new method is called "photon-recoil spectroscopy" (PRS). The potential of this method has been demonstrated by the research group led by Piet Schmidt from the QUEST Institute, which is based at the Physikalisch-Technische Bundesanstalt, together with colleagues from Leibniz University Hannover. In contrast to the original quantum logic technique, the new method enables the investigation of very fast transitions in atoms or molecules.

The results have been published in the current edition of Nature Communications.

With this new method, spectroscopic investigations will be possible on nearly any kind of particles. The only condition is that they absorb just a few photons from a laser beam. This not only allows extremely accurate frequency measurements, but also increases the chances of finding discrepancies in observations of a possible change in the fine-structure constant. Furthermore, numerous other applications will arise, for instance in astronomy or chemistry.

Piet Schmidt is a former colleague of David Wineland's. He worked in the research group of the Noble prize laureate for some time at the National Institute of Standards and Technology (NIST) (PTB's counterpart in the USA) and was involved in the development of quantum logic spectroscopy (QLS) there. At that time, the comparison of astronomic spectra and laboratory spectra had already indicated that the fine-structure constant may have changed. The significance of those measurements was, however, limited since the laboratory spectra of the metal ions were not sufficiently well known. "Since no sufficiently precise spectroscopic method existed for these ions at the time, I came up with the idea of photon-recoil spectroscopy (PRS) as an extension of quantum logic spectroscopy. This method allows a precise investigation of these ions," Schmidt says. "Similar to quantum logic spectroscopy, we capture the ion that we want to investigate in a trap together with an auxiliary ion," Yong Wan (the first author of the study) explains. The experiment was carried out in a sophisticated set-up consisting of a pair of two closely coupled ions -- a calcium ion and a magnesium ion. The two ions repel each other due to their electric charge, but are kept together by the ion trap and are thus forced to do everything together, similar to a pair of twins. The researchers exploit this circumstance to obtain information on the ion they want to investigate (the spectroscopy ion, in their experiment, the calcium ion) by observing the behaviour of the easily controllable second ion (auxiliary or logic ion, in their case, the magnesium ion).

Wan illustrates the principle as follows: "Just imagine a child sitting on a swing at rest. You throw the child a ball, and then more balls, each of them exactly at times when the swing is moving particularly fast. The swing is thus excited into very strong oscillations. This is exactly the same with laser light pulses when we direct them at our ion pair: if they have the suitable frequency, the photons are absorbed and cause the spectroscopy ion to oscillate due to the recoil kick. Because it is strongly coupled to the auxiliary ion, the latter also oscillates simultaneously." To stick to the image of the child: now two children are sitting on two swings next to each other, they hold onto each other and are unable to let go. "The auxiliary ion allows us to detect the oscillation of the spectroscopy ion very efficiently, since we can control the former very accurately and observe it -- in contrast to the spectroscopy ion," Wan explains. The small signal of the spectroscopy ion is amplified via the auxiliary ion. "This makes our method much more sensitive than if we were to detect the photons themselves, as has mostly been the case with the previous spectroscopic techniques." Previously, thousands of photons had to be scattered by the ion to obtain a meaningful signal. "Our method requires merely ten photons to give the same signal," Florian Gebert (co-autor of the investigation) explains. After researchers from Innsbruck, Austria, showed in a similar experiment -- a few months ago -- that even single photons can be detected in this way, Schmidt's group has now demonstrated that quantum recoil spectroscopy is indeed very accurate. Hereby, the collaboration with Klemens Hammerer's group from Leibniz University Hannover was of central importance. "Thanks to their analytical model, systematic shifts of the observed signal could be accurately predicted," Schmidt says.

In this way, Wan and his colleagues have measured the frequency of a certain transition in calcium to an accuracy of 88 kHz. Previous measurements were less precise by more than an order of magnitude. A special feature of the technique is its flexibility: "We only need to change the spectroscopy ion and to tune the spectroscopy laser to be able to investigate the next ion species. The auxiliary ion and the complex laser set-up it requires remain unchanged," Schmidt explains. His objective is -- typical of PTB -- to carry out absolute frequency measurements of many different ions with greatest possible precision.

Contrary to the original quantum logic spectroscopy, the new technique allows the investigation of ions which remain in their excited state for a few micro- or even nano-seconds only. This considerably extends the range of applications accessible. Together with the greater sensitivity, this opens up new possibilities in the precision spectroscopy of molecular and metal ions which are found in space and are often used as reference by astronomers. This is good news, for example, for the researchers who compare ancient quasar light with "new" light in order to detect possible changes in the fine-structure constant. Technically speaking, these scientists do not investigate the light itself, but the characteristic spectra of the elements which are traversed by the light. These and further astronomic investigations will become more accurate thanks to Schmidt's measurements. "Our method is so versatile that a lot of other applications in astronomy or chemistry will come up," Schmidt expects.


Story Source:

The above story is based on materials provided by Physikalisch-Technische Bundesanstalt (PTB). Note: Materials may be edited for content and length.


Journal Reference:

  1. Yong Wan, Florian Gebert, Jannes B Wόbbena, Nils Scharnhorst, Sana Amairi, Ian D Leroux, Bφrge Hemmerling, Niels Lφrch, Klemens Hammerer, Piet O Schmidt. Precision spectroscopy by photon-recoil signal amplification. Nature Communications, 2014; 5 DOI: 10.1038/ncomms4096

Cite This Page:

Physikalisch-Technische Bundesanstalt (PTB). "Photon recoil provides new insight into matter: New precision spectroscopy allows unprecedented accuracy." ScienceDaily. ScienceDaily, 30 January 2014. <www.sciencedaily.com/releases/2014/01/140130092834.htm>.
Physikalisch-Technische Bundesanstalt (PTB). (2014, January 30). Photon recoil provides new insight into matter: New precision spectroscopy allows unprecedented accuracy. ScienceDaily. Retrieved April 23, 2014 from www.sciencedaily.com/releases/2014/01/140130092834.htm
Physikalisch-Technische Bundesanstalt (PTB). "Photon recoil provides new insight into matter: New precision spectroscopy allows unprecedented accuracy." ScienceDaily. www.sciencedaily.com/releases/2014/01/140130092834.htm (accessed April 23, 2014).

Share This



More Matter & Energy News

Wednesday, April 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Is North Korea Planning Nuclear Test #4?

Is North Korea Planning Nuclear Test #4?

Newsy (Apr. 22, 2014) — South Korean officials say North Korea is preparing to conduct another nuclear test, but is Pyongyang just bluffing this time? Video provided by Newsy
Powered by NewsLook.com
China Falls for 4x4s at Beijing Auto Show

China Falls for 4x4s at Beijing Auto Show

AFP (Apr. 22, 2014) — The urban 4x4 is the latest must-have for Chinese drivers, whose conversion to the cult of the SUV is the talking point of this year's Beijing auto show. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com
Lytro Introduces 'Illum,' A Professional Light-Field Camera

Lytro Introduces 'Illum,' A Professional Light-Field Camera

Newsy (Apr. 22, 2014) — The light-field photography engineers at Lytro unveiled their next innovation: a professional DSLR-like camera called "Illum." Video provided by Newsy
Powered by NewsLook.com
3 Reasons Why Harley Davidson Is Selling Tons of Epic Hogs

3 Reasons Why Harley Davidson Is Selling Tons of Epic Hogs

TheStreet (Apr. 22, 2014) — Sales of motorcycles have continued to ride back from the depths of hell known as the Great Recession. Excluding scooters, sales of motorcycles increased 3% in 2013. In units, however, at 465,000 sold last year, the total remained about 50% below the peak hit in 2007. Industry leader Harley Davidson’s shareholders have benefited both by the industry recovery and positive headlines emanating from the company. Belus Capital Advisors CEO Brian Sozzi takes you beyond the headlines of the motorcycle maker. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins