Featured Research

from universities, journals, and other organizations

Faster X-ray technology paves the way for better catalysts: Researchers observe a catalyst surface at work with atomic resolution

Date:
January 30, 2014
Source:
Deutsches Elektronen-Synchrotron DESY
Summary:
By using a novel X-ray technique, researchers have observed a catalyst surface at work in real time and were able to resolve its atomic structure in detail. The new technique may pave the way for the design of better catalysts and other materials on the atomic level.

Schematic illustration of the palladium surface with a single oxide layer.
Credit: Johan Gustafson/Lund University

By using a novel X-ray technique, researchers have observed a catalyst surface at work in real time and were able to resolve its atomic structure in detail. The new technique, pioneered at DESY's X-ray light source PETRA III, may pave the way for the design of better catalysts and other materials on the atomic level. It greatly speeds up the determination of atomic surface structures and enables live recordings of surface reactions like catalysis, corrosion and growth processes with a time resolution of less than a second. "We can now investigate surface processes that were not observable in real time before and that play a central role in many fields of materials science," explains DESY researcher Prof. Andreas Stierle.

The Swedish-German research team working with lead author Dr. Johan Gustafson of Lund University presented their work in the journal Science.

Materials scientists currently lack a method to record data of the full atomic structure of surfaces during dynamic processes within a reasonable time. Existing methods are either too slow or require ultra high vacuum, prohibiting the flow of gas in the test chamber and thus ruling out a live investigation of dynamic reaction processes involving gas phases at near atmospheric pressures.

"Our goal was to observe surfaces under reactive, application-oriented conditions in real time," says Stierle. The team used the high-energy X-rays from DESY's light source PETRA III. When X-rays strike a solid material, they are diffracted into a characteristic pattern that yields information about the atomic structure of the material. In conventional X-ray measurements performed at lower photon energies, the sample and the detector must be rotated to map out the full diffraction pattern painstakingly step by step, a procedure that can easily consume ten hours or more.

In contrast, the high-energy X-rays of PETRA III are scattered into a much smaller angular range, producing a much more compact diffraction pattern that can be recorded at once with a high-end two-dimensional detector at the High-Energy Materials Science measuring station P07. "This approach makes it possible to record data 10 to 100 times faster," explains Stierle. As a consequence, scientists can gain a full surface structure in less than ten minutes or track individual structural features with a temporal resolution of less than a second. "It also allows us to more easily identify unknown or unexpected structures," underlines Stierle.

For their investigations, the researchers installed a test chamber, in which the gas pressure can be up to 1 bar -- the same as normal atmospheric pressure -- to approach realistic reaction conditions. A mass spectrometer allows for on-line monitoring of the gas distribution within the test chamber during measurements.

To demonstrate the new approach, the researchers watched a catalyst of the precious metal palladium live at work: a two millimetre thick palladium single crystal with a diameter of one centimetre converts toxic carbon monoxide into harmless carbon dioxide, much like catalytic converters do in cars. The technique enabled the scientists to observe how the palladium began to convert the carbon monoxide (CO) into carbon dioxide (CO2) as soon as oxygen (O2) also flowed into the chamber. "We can watch how the catalyst switches from a non-reactive state into a reactive one," explains Stierle who heads the NanoLab at DESY and also holds an appointment as professor at the University of Hamburg.

The researchers hope to identify the catalyst's active phase by using this new approach. For decades, scientists have debated whether the conversion of carbon monoxide into carbon dioxide, for example, takes place on the bare metallic surface, on an oxide layer, or on oxide islands on the surface. "The new technology gives us the opportunity to identify the reaction centres in real time at atomic resolution," says Stierle.

In the end, the findings could be used to optimise catalysts. In general, catalysts are substances that accelerate chemical reactions without being consumed by them. The new X-ray technique has a wide variety of applications for materials research. The scientists expect completely new insights into the kinetics of surface processes, enabling the design of new materials on the atomic level. "The combination of the extremely bright X-ray source, the sample environment and the 2D detector at PETRA III is worldwide unique," emphasises Stierle.

The new X-ray technique has been jointly developed by researchers from Lund University, DESY, Chalmers University of Technology in Gothenburg and the University of Hamburg within the Röntgen-Ångström-Cluster and received financial support from the German Federal Ministry of Research BMBF within the project NanoXcat.


Story Source:

The above story is based on materials provided by Deutsches Elektronen-Synchrotron DESY. Note: Materials may be edited for content and length.


Journal Reference:

  1. J. Gustafson, M. Shipilin, C. Zhang, A. Stierle, U. Hejral, U. Ruett, O. Gutowski, P.-A. Carlsson, M. Skoglundh, E. Lundgren. High-Energy Surface X-Ray Diffraction for Fast Surface Structure Determination. Science, 2014 DOI: 10.1126/science.1246834

Cite This Page:

Deutsches Elektronen-Synchrotron DESY. "Faster X-ray technology paves the way for better catalysts: Researchers observe a catalyst surface at work with atomic resolution." ScienceDaily. ScienceDaily, 30 January 2014. <www.sciencedaily.com/releases/2014/01/140130141301.htm>.
Deutsches Elektronen-Synchrotron DESY. (2014, January 30). Faster X-ray technology paves the way for better catalysts: Researchers observe a catalyst surface at work with atomic resolution. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2014/01/140130141301.htm
Deutsches Elektronen-Synchrotron DESY. "Faster X-ray technology paves the way for better catalysts: Researchers observe a catalyst surface at work with atomic resolution." ScienceDaily. www.sciencedaily.com/releases/2014/01/140130141301.htm (accessed October 20, 2014).

Share This



More Matter & Energy News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Gulfstream G500, G600 Unveiling

Gulfstream G500, G600 Unveiling

Flying (Oct. 20, 2014) — Watch Gulfstream's public launch of the G500 and G600 at their headquarters in Savannah, Ga., along with a surprise unveiling of the G500, which taxied up under its own power. Video provided by Flying
Powered by NewsLook.com
Japanese Scientists Unveil Floating 3D Projection

Japanese Scientists Unveil Floating 3D Projection

Reuters - Innovations Video Online (Oct. 20, 2014) — Scientists in Tokyo have demonstrated what they say is the world's first 3D projection that floats in mid air. A laser that fires a pulse up to a thousand times a second superheats molecules in the air, creating a spark which can be guided to certain points in the air to shape what the human eye perceives as an image. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

3BL Media (Oct. 20, 2014) — Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-fuel Impala Video provided by 3BL
Powered by NewsLook.com
What We Know About Microsoft's Rumored Smartwatch

What We Know About Microsoft's Rumored Smartwatch

Newsy (Oct. 20, 2014) — Microsoft will reportedly release a smartwatch that works across different mobile platforms, has a two-day battery life and tracks heart rate. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins