Featured Research

from universities, journals, and other organizations

How does radioactive waste interact with soil and sediments?

Date:
February 3, 2014
Source:
Sandia National Laboratories
Summary:
Scientists are developing computer models that show how radioactive waste interacts with soil and sediments, shedding light on waste disposal and how to keep contamination away from drinking water.

Sandia National Laboratories geoscientist Randall Cygan uses computers to build models showing how contaminants interact with clay minerals.
Credit: Lloyd Wilson

Sandia National Laboratories is developing computer models that show how radioactive waste interacts with soil and sediments, shedding light on waste disposal and how to keep contamination away from drinking water.

Related Articles


"Very little is known about the fundamental chemistry and whether contaminants will stay in soil or rock or be pulled off those materials and get into the water that flows to communities," said Sandia geoscientist Randall Cygan.

Researchers have studied the geochemistry of contaminants such as radioactive materials and toxic heavy metals, including lead, arsenic and cadmium. But laboratory testing of soils is difficult. "The tricky thing about soils is that the constituent minerals are hard to characterize by traditional methods," Cygan said. "In microscopy there are limits on how much information can be extracted."

He said soils are often dominated by clay minerals with ultra-fine grains less than 2 microns in diameter. "That's pretty small," he said. "We can't slap these materials on a microscope or conventional spectrometer and see if contaminants are incorporated into them."

Cygan and his colleagues turned to computers. "On a computer we can build conceptual models," he said. "Such molecular models provide a valuable way of testing viable mechanisms for how contaminants interact with the mineral surface."

He describes clay minerals as the original nanomaterial, the final product of the weathering process of deep-seated rocks. "Rocks weather chemically and physically into clay minerals," he said. "They have a large surface area that can potentially adsorb many different types of contaminants."

Clay minerals are made up of aluminosilicate layers held together by electrostatic forces. Water and ions can seep between the layers, causing them to swell, pull apart and adsorb contaminants. "That's an efficient way to sequester radionuclides or heavy metals from ground waters," Cygan said. "It's very difficult to analyze what's going on in the interlayers at the molecular level through traditional experimental methods."

Molecular modeling describes the characteristics and interaction of the contaminants in and on the clay minerals. Sandia researchers are developing the simulation tools and the critical energy force field needed to make the tools as accurate and predictive as possible. "We've developed a foundational understanding of how the clay minerals interact with contaminants and their atomic components," Cygan said. "That allows us to predict how much of a contaminant can be incorporated into the interlayer and onto external surfaces, and how strongly it binds to the clay."

The computer models quantify how well a waste repository might perform. "It allows us to develop performance assessment tools the Environmental Protection Agency and Nuclear Regulatory Commission need to technically and officially say, 'Yes, let's go ahead and put nuclear waste in these repositories,'" Cygan said.

Molecular modeling methods also are used by industry and government to determine the best types of waste treatment and mitigation. "We're providing the fundamental science to improve performance assessment models to be as accurate as possible in understanding the surface chemistry of natural materials," Cygan said. "This work helps provide quantification of how strongly or weakly uranium, for example, may adsorb to a clay surface, and whether one type of clay over another may provide a better barrier to radionuclide transport from a waste repository. Our molecular models provide a direct way of making this assessment to better guide the design and engineering of the waste site. How cool is that?"


Story Source:

The above story is based on materials provided by Sandia National Laboratories. Note: Materials may be edited for content and length.


Cite This Page:

Sandia National Laboratories. "How does radioactive waste interact with soil and sediments?." ScienceDaily. ScienceDaily, 3 February 2014. <www.sciencedaily.com/releases/2014/02/140203122545.htm>.
Sandia National Laboratories. (2014, February 3). How does radioactive waste interact with soil and sediments?. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2014/02/140203122545.htm
Sandia National Laboratories. "How does radioactive waste interact with soil and sediments?." ScienceDaily. www.sciencedaily.com/releases/2014/02/140203122545.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Antarctic Sea Ice Mystery Thickens... Literally

Antarctic Sea Ice Mystery Thickens... Literally

Newsy (Nov. 25, 2014) — Antarctic sea ice isn't only expanding, it's thicker than previously thought, and scientists aren't sure exactly why. Video provided by Newsy
Powered by NewsLook.com
3D Map of Antarctic Sea Ice to Shed Light on Climate Change

3D Map of Antarctic Sea Ice to Shed Light on Climate Change

Reuters - Innovations Video Online (Nov. 24, 2014) — A multinational group of scientists have released the first ever detailed, high-resolution 3-D maps of Antarctic sea ice. Using an underwater robot equipped with sonar, the researchers mapped the underside of a massive area of sea ice to gauge the impact of climate change. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Car Park Solution for Flexible Green Energy

Car Park Solution for Flexible Green Energy

Reuters - Innovations Video Online (Nov. 24, 2014) — A British solar power start-up says that by covering millions of existing car park spaces around the UK with flexible solar panels, the country's power problems could be solved. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Yellow-Spotted Turtles Rescued from Trafficking

Yellow-Spotted Turtles Rescued from Trafficking

Reuters - Light News Video Online (Nov. 24, 2014) — Hundreds of Amazon River turtles released into the wild in Peru. Sharon Reich reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins