Featured Research

from universities, journals, and other organizations

Molecular traffic jam makes water move faster through nanochannels

Date:
February 6, 2014
Source:
Northwestern University
Summary:
Water molecules traveling through tiny carbon nanotube pipes do not flow continuously but rather intermittently, like stop-and-go traffic, with unexpected results, researchers say.

Cars inch forward slowly in traffic jams, but molecules, when jammed up, can move extremely fast.

New research by Northwestern University researchers finds that water molecules traveling through tiny carbon nanotube pipes do not flow continuously but rather intermittently, like stop-and-go traffic, with unexpected results.

"Previous molecular dynamics simulations suggested that water molecules coursing through carbon nanotubes are evenly spaced and move in lockstep with one another," said Seth Lichter, professor of mechanical engineering at Northwestern's McCormick School of Engineering and Applied Science. "But our model shows that they actually move intermittently, enabling surprisingly high flow rates of 10 billion molecules per second or more."

The research is described in an Editor's Choice paper, "Solitons Transport Water through Narrow Carbon Nanotubes," published January 27 in the journal Physical Review Letters.

The findings could resolve a quandary that has baffled fluid dynamics experts for years. In 2005, researchers -- working under the assumption that water molecules move through channels in a constant stream -- made a surprising discovery: water in carbon nanotubes traveled 10,000 times faster than predicted.

The phenomenon was attributed to a supposed smoothness of the carbon nanotubes' surface, but further investigation uncovered the counterintuitive role of their inherently rough interior.

Lichter and post-doctoral researcher Thomas Sisan performed new simulations with greater time resolution, revealing localized variations in the distribution of water along the nanotube. The variations occur where the water molecules do not line up perfectly with the spacing between carbon atoms -- creating regions in which the water molecules are unstable and so propagate exceedingly easily and rapidly through the nanotube.

Nanochannels are found in all of our cells, where they regulate fluid flow across cell membranes. They also have promising industrial applications for desalinating water. Using the newly discovered fluid dynamics principles could enable other applications such as chemical separations, carbon nanotube-powered batteries, and the fabrication of quantum dots, nanocrystals with potential applications in electronics.


Story Source:

The above story is based on materials provided by Northwestern University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Thomas B. Sisan Seth Lichter. Solitons Transport Water through Narrow Carbon Nanotubes. Physical Review Letters, 2014 DOI: 10.1103/PhysRevLett.112.044501

Cite This Page:

Northwestern University. "Molecular traffic jam makes water move faster through nanochannels." ScienceDaily. ScienceDaily, 6 February 2014. <www.sciencedaily.com/releases/2014/02/140206133832.htm>.
Northwestern University. (2014, February 6). Molecular traffic jam makes water move faster through nanochannels. ScienceDaily. Retrieved August 23, 2014 from www.sciencedaily.com/releases/2014/02/140206133832.htm
Northwestern University. "Molecular traffic jam makes water move faster through nanochannels." ScienceDaily. www.sciencedaily.com/releases/2014/02/140206133832.htm (accessed August 23, 2014).

Share This




More Matter & Energy News

Saturday, August 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Is It a Plane? No, It's a Hoverbike

Is It a Plane? No, It's a Hoverbike

Reuters - Business Video Online (Aug. 22, 2014) UK-based Malloy Aeronautics is preparing to test a manned quadcopter capable of out-manouvering a helicopter and presenting a new paradigm for aerial vehicles. A 1/3-sized scale model is already gaining popularity with drone enthusiasts around the world, with the full-sized manned model expected to take flight in the near future. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Coal Gas Boom in China Holds Climate Risks

Coal Gas Boom in China Holds Climate Risks

AP (Aug. 22, 2014) China's energy revolution could do more harm than good for the environment, despite the country's commitment to reducing pollution and curbing its carbon emissions. (Aug. 22) Video provided by AP
Powered by NewsLook.com
Former TSA X-Ray Scanners Easily Tricked To Miss Weapons

Former TSA X-Ray Scanners Easily Tricked To Miss Weapons

Newsy (Aug. 21, 2014) Researchers found the scanners could be duped simply by placing a weapon off to the side of the body or encasing it under a plastic shield. Video provided by Newsy
Powered by NewsLook.com
Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins