Featured Research

from universities, journals, and other organizations

Protein to repair damaged brain tissue in MS identified

Date:
February 7, 2014
Source:
Children's National Medical Center
Summary:
Researchers have found a "potentially novel therapeutic target" to reduce the rate of deterioration and to promote growth of brain cells damaged by multiple sclerosis. Current therapies can be effective in patients with relapsing multiple sclerosis but have little impact in promoting tissue growth.

Vittorio Gallo, PhD,Director of the Center for Neuroscience Research at Children's National Health System, and other researchers have found a "potentially novel therapeutic target" to reduce the rate of deterioration and to promote growth of brain cells damaged by multiple sclerosis (MS). Current therapies can be effective in patients with relapsing MS, but have little impact in promoting tissue growth.

The brain produces new cells to repair the damage from MS years after symptoms appear. However, in most cases the cells are unable to complete the repair, as unknown factors limit this process. In MS patients, brain inflammation in random patches, or lesions, leads to destruction of myelin, the fatty covering that insulates nerve cell fibers called axons in the brain, and aids in transmission of signals to other neurons.

In yesterday's publication of Neuron, Gallo, who also is a professor of pediatrics at the George Washington University School of Medicine and Health Sciences (SMHS), reported identifying a small protein that can be targeted to promote repair of damaged tissue, with therapeutic potential. The molecule, Endothelin-1 (ET-1), is shown to inhibit repair of myelin. Myelin damage is a hallmark characteristic of MS. The study demonstrates that blocking ET-1 pharmacologically or using a genetic approach could promote myelin repair.

Repair of damaged MS plaques is carried out by endogenous oliogdendrocytle progenitor cells (OPCs) in a process called remyelination. Current MS therapy can be effective in patients with relapsing and remitting MS, but "have little impact in promoting remyelination in tissue," Gallo said. Several studies have shown that OPCs fail to differentiate in chronic MS lesions. Targeting ET-1 is a process that involves identifying signals in cells that could promote lesion repair.

"We demonstrate that ET-1 drastically reduces the rate of remyelination," Gallo said. As such, ET-1 is "potentially a therapeutic target to promote lesion repair in deymyelinated tissue." It could play a "crucial role in preventing normal myelination in MS and in other demyelinating diseases," Gallo said.


Story Source:

The above story is based on materials provided by Children's National Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. TimothyR. Hammond, Ana Gadea, Jeff Dupree, Christophe Kerninon, Brahim Nait-Oumesmar, Adan Aguirre, Vittorio Gallo. Astrocyte-Derived Endothelin-1 Inhibits Remyelination through Notch Activation. Neuron, 2014; 81 (3): 588 DOI: 10.1016/j.neuron.2013.11.015

Cite This Page:

Children's National Medical Center. "Protein to repair damaged brain tissue in MS identified." ScienceDaily. ScienceDaily, 7 February 2014. <www.sciencedaily.com/releases/2014/02/140207114142.htm>.
Children's National Medical Center. (2014, February 7). Protein to repair damaged brain tissue in MS identified. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2014/02/140207114142.htm
Children's National Medical Center. "Protein to repair damaged brain tissue in MS identified." ScienceDaily. www.sciencedaily.com/releases/2014/02/140207114142.htm (accessed April 18, 2014).

Share This



More Health & Medicine News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Scientists Create Stem Cells From Adult Skin Cells

Scientists Create Stem Cells From Adult Skin Cells

Newsy (Apr. 17, 2014) The breakthrough could mean a cure for some serious diseases and even the possibility of human cloning, but it's all still a way off. Video provided by Newsy
Powered by NewsLook.com
Obama: 8 Million Healthcare Signups

Obama: 8 Million Healthcare Signups

AP (Apr. 17, 2014) President Barack Obama gave a briefing Thursday announcing 8 million people have signed up under the Affordable Care Act. He blasted continued Republican efforts to repeal the law. (April 17) Video provided by AP
Powered by NewsLook.com
Is Apathy A Sign Of A Shrinking Brain?

Is Apathy A Sign Of A Shrinking Brain?

Newsy (Apr. 17, 2014) A recent study links apathetic feelings to a smaller brain. Researchers say the results indicate a need for apathy screening for at-risk seniors. Video provided by Newsy
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins