Featured Research

from universities, journals, and other organizations

Protein to repair damaged brain tissue in MS identified

Date:
February 7, 2014
Source:
Children's National Medical Center
Summary:
Researchers have found a "potentially novel therapeutic target" to reduce the rate of deterioration and to promote growth of brain cells damaged by multiple sclerosis. Current therapies can be effective in patients with relapsing multiple sclerosis but have little impact in promoting tissue growth.

Vittorio Gallo, PhD,Director of the Center for Neuroscience Research at Children's National Health System, and other researchers have found a "potentially novel therapeutic target" to reduce the rate of deterioration and to promote growth of brain cells damaged by multiple sclerosis (MS). Current therapies can be effective in patients with relapsing MS, but have little impact in promoting tissue growth.

The brain produces new cells to repair the damage from MS years after symptoms appear. However, in most cases the cells are unable to complete the repair, as unknown factors limit this process. In MS patients, brain inflammation in random patches, or lesions, leads to destruction of myelin, the fatty covering that insulates nerve cell fibers called axons in the brain, and aids in transmission of signals to other neurons.

In yesterday's publication of Neuron, Gallo, who also is a professor of pediatrics at the George Washington University School of Medicine and Health Sciences (SMHS), reported identifying a small protein that can be targeted to promote repair of damaged tissue, with therapeutic potential. The molecule, Endothelin-1 (ET-1), is shown to inhibit repair of myelin. Myelin damage is a hallmark characteristic of MS. The study demonstrates that blocking ET-1 pharmacologically or using a genetic approach could promote myelin repair.

Repair of damaged MS plaques is carried out by endogenous oliogdendrocytle progenitor cells (OPCs) in a process called remyelination. Current MS therapy can be effective in patients with relapsing and remitting MS, but "have little impact in promoting remyelination in tissue," Gallo said. Several studies have shown that OPCs fail to differentiate in chronic MS lesions. Targeting ET-1 is a process that involves identifying signals in cells that could promote lesion repair.

"We demonstrate that ET-1 drastically reduces the rate of remyelination," Gallo said. As such, ET-1 is "potentially a therapeutic target to promote lesion repair in deymyelinated tissue." It could play a "crucial role in preventing normal myelination in MS and in other demyelinating diseases," Gallo said.


Story Source:

The above story is based on materials provided by Children's National Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. TimothyR. Hammond, Ana Gadea, Jeff Dupree, Christophe Kerninon, Brahim Nait-Oumesmar, Adan Aguirre, Vittorio Gallo. Astrocyte-Derived Endothelin-1 Inhibits Remyelination through Notch Activation. Neuron, 2014; 81 (3): 588 DOI: 10.1016/j.neuron.2013.11.015

Cite This Page:

Children's National Medical Center. "Protein to repair damaged brain tissue in MS identified." ScienceDaily. ScienceDaily, 7 February 2014. <www.sciencedaily.com/releases/2014/02/140207114142.htm>.
Children's National Medical Center. (2014, February 7). Protein to repair damaged brain tissue in MS identified. ScienceDaily. Retrieved August 23, 2014 from www.sciencedaily.com/releases/2014/02/140207114142.htm
Children's National Medical Center. "Protein to repair damaged brain tissue in MS identified." ScienceDaily. www.sciencedaily.com/releases/2014/02/140207114142.htm (accessed August 23, 2014).

Share This




More Health & Medicine News

Saturday, August 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Two US Ebola Patients Leave Hospital Free of the Disease

Two US Ebola Patients Leave Hospital Free of the Disease

AFP (Aug. 21, 2014) Two American missionaries who were sickened with Ebola while working in Liberia and were treated with an experimental drug are doing better and have left the hospital, doctors say on August 21, 2014. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
Cadavers, a Teen, and a Medical School Dream

Cadavers, a Teen, and a Medical School Dream

AP (Aug. 21, 2014) Contains graphic content. He's only 17. But Johntrell Bowles has wanted to be a doctor from a young age, despite the odds against him. He was recently the youngest participant in a cadaver program at the Indiana University NW medical school. (Aug. 21) Video provided by AP
Powered by NewsLook.com
American Ebola Patients Released: What Cured Them?

American Ebola Patients Released: What Cured Them?

Newsy (Aug. 21, 2014) It's unclear whether the American Ebola patients' recoveries can be attributed to an experimental drug or early detection and good medical care. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins