Featured Research

from universities, journals, and other organizations

Why white dots appear larger than equal size black dots: How Galileo's visual illusion works in the mind's eye

Date:
February 10, 2014
Source:
State University of New York College of Optometry
Summary:
Scientists have studied a visual illusion first discovered by Galileo Galilei, and found that it occurs because of the surprising way our eyes see lightness and darkness in the world. Their results advance our understanding of how our brains are wired for seeing white versus black objects.

Scientists have studied a visual illusion first discovered by Galileo Galilei, and found that it occurs because of the surprising way our eyes see lightness and darkness in the world. Their results advance our understanding of how our brains are wired for seeing white versus black objects.

The work was done by Jens Kremkow and collaborators in the laboratories of Jose Manuel Alonso and Qasim Zaidi at the State University of New York College of Optometry. It will be published on February 10 of 2014 in the Proceedings of the National Academy of Sciences.

Galileo was puzzled by the fact that the appearance of the planets depended on whether one looked with the naked eye or with a telescope. Viewed directly, planets seemed "expanded" and had "a radiant crown," which made Venus looked eight to ten times larger than Jupiter even though Jupiter was four times larger. Though Galileo realized this size illusion was not created by the object -- but by his eyes -- he did not understand why or how.

He mused, "Either because their light is refracted in the moisture that covers the pupil, or because it is reflected from the edges of the eyelids and these reflected rays are diffused over the pupil, or for some other reason." Generations of scientists following Galileo continued to assume the illusion was caused by blur or similar optical effects. However, though blur can distort size, it does not explain why Venus looks larger than Jupiter with the naked eye. Hermann von Helmholtz -- the venerable 19th Century German physician-physicist -- was the first to realize that something else was needed to explain the illusion, as he described in his Treatise on Physiological Optics.

Only now, with Kremkow and colleagues' new study, has science finally zoomed in and illuminated the scope of the problem. It's a feature of how we see everything, no less. By examining the responses of neurons in the visual system of the brain -- to both light stimuli and dark stimuli -- the neuroscientists discovered that, whereas dark stimuli result in a faithful neural response that accurately represents their size, light stimuli on the contrary result in non-linear and exaggerated responses that make the stimulus look larger. So white spots on a black background look bigger than same-sized black spots on white background, and Galileo's glowing stellar objects are not really as big as they might appear to the unaided eye.

This effect is responsible for how we see everything from textures and faces -- based on their dark parts in bright daylight -- to why it is easier to read this very page with black-on-white lettering, rather than white-on-black (a well known, and until now, unexplained phenomenon). By tracing these effects as a function of the way neurons are laid out and interconnected in the retina and brain, the authors found that the illusion is potentially derived from the very origin of vision -- in the photoreceptors of the eye themselves.


Story Source:

The above story is based on materials provided by State University of New York College of Optometry. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jens Kremkow, Jianzhong Jin, Stanley J. Komban, Yushi Wang, Reza Lashgari, Xiaobing Li, Michael Jansen, Qasim Zaidi, and Jose-Manuel Alonso. Neuronal nonlinearity explains greater visual spatial resolution for darks than lights. Proceedings of the National Academy of Sciences, 2014; DOI: 10.1073/pnas.1310442111

Cite This Page:

State University of New York College of Optometry. "Why white dots appear larger than equal size black dots: How Galileo's visual illusion works in the mind's eye." ScienceDaily. ScienceDaily, 10 February 2014. <www.sciencedaily.com/releases/2014/02/140210161318.htm>.
State University of New York College of Optometry. (2014, February 10). Why white dots appear larger than equal size black dots: How Galileo's visual illusion works in the mind's eye. ScienceDaily. Retrieved April 24, 2014 from www.sciencedaily.com/releases/2014/02/140210161318.htm
State University of New York College of Optometry. "Why white dots appear larger than equal size black dots: How Galileo's visual illusion works in the mind's eye." ScienceDaily. www.sciencedaily.com/releases/2014/02/140210161318.htm (accessed April 24, 2014).

Share This



More Space & Time News

Thursday, April 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Nuclear-Level Asteroids Might Be More Common Than We Realize

Nuclear-Level Asteroids Might Be More Common Than We Realize

Newsy (Apr. 23, 2014) The B612 Foundation says asteroids strike Earth much more often than previously thought, and are hoping to build an early warning system. Video provided by Newsy
Powered by NewsLook.com
NASA Chief Outlines Plan for Human Mission to Mars

NASA Chief Outlines Plan for Human Mission to Mars

AFP (Apr. 22, 2014) NASA administrator Charles Bolden, speaking at the 'Human to Mars Summit' in Washington, says that learning more about the Red Planet can help answer the 'fundamental question' of 'life beyond Earth'. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com
Nasa Gives You An Excuse to Post a Selfie on Earth Day

Nasa Gives You An Excuse to Post a Selfie on Earth Day

TheStreet (Apr. 22, 2014) NASA is inviting all social media users to take a selfie of themselves alongside nature and to post it to Twitter, Facebook, Flickr, Instagram, or Google Plus with the hashtag #globalselfie. NASA's goal is to crowd-source a collection of snapshots of the earth, ground-up, that will be used to create one "unique mosaic of the Blue Marble." This image will be available to all in May. Since this is probably one of the few times posting a selfie to Twitter won't be embarrassing, we suggest you give it a go for a good cause. Video provided by TheStreet
Powered by NewsLook.com
SpaceX's Dragon Spacecraft Captured by International Space Station

SpaceX's Dragon Spacecraft Captured by International Space Station

Reuters - US Online Video (Apr. 20, 2014) SpaceX's unmanned Dragon spacecraft makes a scheduled Easter Sunday rendezvous with the International Space Station. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins