Featured Research

from universities, journals, and other organizations

New advance in 3-D printing and tissue engineering technology

Date:
February 10, 2014
Source:
Brigham and Women's Hospital
Summary:
Researchers have introduced a unique micro-robotic technique to assemble the components of complex materials, the foundation of tissue engineering and 3-D printing.

Researchers at Brigham and Women's Hospital (BWH) and Carnegie Mellon University have introduced a unique micro-robotic technique to assemble the components of complex materials, the foundation of tissue engineering and 3D printing.

Described in the Jan. 28, 2014, issue of Nature Communications, the research was conducted by Savas Tasoglu, PhD, MS, research fellow in the BWH Division of Renal Medicine, and Utkan Demirci, PhD, MS, associate professor of Medicine in the Division of Biomedical Engineering, part of the BWH Department of Medicine, in collaboration with Eric Diller, PhD, MS, and Metin Sitti, PhD, MS, professor in the Department of Mechanical Engineering, Carnegie Mellon University.

Tissue engineering and 3D printing have become vitally important to the future of medicine for many reasons. The shortage of available organs for transplantation, for example, leaves many patients on lengthy waiting lists for life-saving treatment. Being able to engineer organs using a patient's own cells can not only alleviate this shortage, but also address issues related to rejection of donated organs. Developing therapies and testing drugs using current preclinical models have limitations in reliability and predictability. Tissue engineering provides a more practical means for researchers to study cell behavior, such as cancer cell resistance to therapy, and test new drugs or combinations of drugs to treat many diseases.

The presented approach uses untethered magnetic micro-robotic coding for precise construction of individual cell-encapsulating hydrogels (such as cell blocks). The micro-robot, which is remotely controlled by magnetic fields, can move one hydrogel at a time to build structures. This is critical in tissue engineering, as human tissue architecture is complex, with different types of cells at various levels and locations. When building these structures, the location of the cells is significant in that it will impact how the structure will ultimately function. "Compared with earlier techniques, this technology enables true control over bottom-up tissue engineering," explains Tasoglu.

Tasoglu and Demirci also demonstrated that micro-robotic construction of cell-encapsulating hydrogels can be performed without affecting cell vitality and proliferation. Further benefits may be realized by using numerous micro-robots together in bioprinting, the creation of a design that can be utilized by a bioprinter to generate tissue and other complex materials in the laboratory environment.

"Our work will revolutionize three-dimensional precise assembly of complex and heterogeneous tissue engineering building blocks and serve to improve complexity and understanding of tissue engineering systems," said Metin Sitti, professor of Mechanical Engineering and the Robotics Institute and head of CMU's NanoRobotics Lab.

"We are really just beginning to explore the many possibilities in using this micro-robotic technique to manipulate individual cells or cell-encapsulating building blocks." says Demirci. "This is a very exciting and rapidly evolving field that holds a lot of promise in medicine."


Story Source:

The above story is based on materials provided by Brigham and Women's Hospital. Note: Materials may be edited for content and length.


Journal Reference:

  1. S. Tasoglu, E. Diller, S. Guven, M. Sitti, U. Demirci. Untethered micro-robotic coding of three-dimensional material composition. Nature Communications, 2014; 5 DOI: 10.1038/ncomms4124

Cite This Page:

Brigham and Women's Hospital. "New advance in 3-D printing and tissue engineering technology." ScienceDaily. ScienceDaily, 10 February 2014. <www.sciencedaily.com/releases/2014/02/140210184719.htm>.
Brigham and Women's Hospital. (2014, February 10). New advance in 3-D printing and tissue engineering technology. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2014/02/140210184719.htm
Brigham and Women's Hospital. "New advance in 3-D printing and tissue engineering technology." ScienceDaily. www.sciencedaily.com/releases/2014/02/140210184719.htm (accessed August 21, 2014).

Share This




More Matter & Energy News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins