Featured Research

from universities, journals, and other organizations

No clowning around: Juggling sheds light on how we run

Date:
February 11, 2014
Source:
Johns Hopkins
Summary:
Juggling may seem like mere entertainment, but a study led by engineers used this circus skill to gather critical clues about how vision and the sense of touch help control the way humans and animals move their limbs in a repetitive way, such as in running. The findings eventually may aid in the treatment of people with neurological diseases and could lead to prosthetic limbs and robots that move more efficiently.

Johns Hopkins engineers, led by Noah Cowan, studied a juggling task to learn how the sense of touch contributes to rhythmic movement such as running.
Credit: Johns Hopkins University

Juggling may seem like mere entertainment, but a study led by Johns Hopkins engineers used this circus skill to gather critical clues about how vision and the sense of touch help control the way humans and animals move their limbs in a repetitive way, such as in running. The findings eventually may aid in the treatment of people with neurological diseases and could lead to prosthetic limbs and robots that move more efficiently.

Related Articles


The study was published online recently by the Journal of Neurophysiology and will be the cover article in the journal's March 2014 print edition.

In their paper, the team led by Johns Hopkins researchers detailed the unusual jump from juggling for fun to serious science. Jugglers, they explained, rely on repeated rhythmic motions to keep multiple balls aloft. Similar forms of rhythmic movement are also common in the animal world, where effective locomotion is equally important to a swift-moving gazelle and to the cheetah that's chasing it.

"It turns out that the art of juggling provides an interesting window into many of the same questions that you try to answer when you study forms of locomotion, such as walking or running," said Noah Cowan, an associate professor of mechanical engineering who supervised the research. "In our study, we had participants stand still and use their hands in a rhythmic way. It's very much like watching them move their feet as they run. But we used juggling as a model for rhythmic motor coordination because it's a simpler system to study."

Specifically, Cowan and his colleagues wanted to look at how the brain uses vision and the sense of touch to control this type of behavior. To do so, they set up a simple virtual juggling scenario. Participants held a real-world paddle connected to a computer and were told to bounce an on-screen ball repeatedly up to a target area between two lines, also drawn on the monitor. In some trials, the participants had only their vision to guide them. In others experiments, whenever the digital ball hit the onscreen paddle the participants also received a brief impulse on their real-world paddle. This mimicked the sensation they would feel if a real ball had actually struck the paddle they were holding.

With the added touch sensation, also called haptic feedback, the participants made about half as many errors in the task, the researchers reported.

"We have a pretty good understanding as to why," said Cowan, who has been an amateur juggler since middle school. "One of the tricky challenges in juggling is catching a rhythm; that is, getting yourself entrained with the movement of the ball. It's about timing your own action with the action in the environment. When you get the pulse of haptic feedback at the exact moment the ball hits the paddle, it give you a precise sense of the timing for the juggling pattern that you're trying to achieve."

Added M. Mert Ankarali, a Johns Hopkins mechanical engineering doctoral student who was lead author of the study: "The human nervous system gets feedback all of the time from our sense of vision. But the important thing about the sense of touch while juggling is that we get a precise timing cue that complements the continuous visual feedback. This timing cue is very important for us to get the rhythm of the juggling task."

A more surprising discovery was that adding the touch feedback didn't seem to improve the participants' ability to correct for any juggling errors they made while trying to hit the ball into the target zone. But it did enable them to make fewer errors overall. "The haptic sensation is just a tiny bit of feedback that's provided once per juggling cycle," Cowan said. "Yet that tiny bit of information seems to be critical for people to improve their juggling performance. We think that's because while vision provides excellent spatial and positioning information, the haptic information provides very important timing information."

When humans and animals walk or run, Cowan added, their sense of touch plays a key role: As the runner's feet touch the ground, they alert the nervous system to adjust the movement of the legs to accommodate changes in the running surface. He also noted that the brain's ability to instantly integrate information coming from both the eyes and the sense of touch is a critical part of successful running, juggling and other repetitive movements.

The researchers say that future studies of the connection between sensory feedback, timing and limb movements could help clinicians to better understand how some neurological diseases such as sensory ataxia might disrupt the brain's timing of movements by arms and legs. Future findings may also assist engineers who are trying to make touch-sensitive artificial limbs and robots that move as skillfully as animals in the wild.

Along with Cowan and Ankarali, the co-authors of the juggling study were H. Tutkun Sen, a Johns Hopkins computer science graduate student; Avik De, a University of Pennsylvania doctoral student who earned his undergraduate degree at Johns Hopkins; and Allison M. Okamura, an associate professor of mechanical engineering at Stanford University.

The research was based upon work supported by the National Science Foundation under grants 0845749 and 642 1230493 to Cowan. Ankarali was partially supported by a fellowship from the Department of Mechanical Engineering at Johns Hopkins. The department is within the university's Whiting School of Engineering.

A movie clip of the juggling task used in the study can be viewed at: http://youtu.be/qmn7p2f_HLs


Story Source:

The above story is based on materials provided by Johns Hopkins. Note: Materials may be edited for content and length.


Cite This Page:

Johns Hopkins. "No clowning around: Juggling sheds light on how we run." ScienceDaily. ScienceDaily, 11 February 2014. <www.sciencedaily.com/releases/2014/02/140211133003.htm>.
Johns Hopkins. (2014, February 11). No clowning around: Juggling sheds light on how we run. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2014/02/140211133003.htm
Johns Hopkins. "No clowning around: Juggling sheds light on how we run." ScienceDaily. www.sciencedaily.com/releases/2014/02/140211133003.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) — The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com
Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Newsy (Nov. 25, 2014) — Need another reason to eat yogurt every day? Researchers now say it could reduce a person's risk of developing type 2 diabetes. Video provided by Newsy
Powered by NewsLook.com
Madagascar Working to Contain Plague Outbreak

Madagascar Working to Contain Plague Outbreak

AFP (Nov. 24, 2014) — Madagascar said Monday it is trying to contain an outbreak of plague -- similar to the Black Death that swept Medieval Europe -- that has killed 40 people and is spreading to the capital Antananarivo. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com
Are Female Bosses More Likely To Be Depressed?

Are Female Bosses More Likely To Be Depressed?

Newsy (Nov. 24, 2014) — A new study links greater authority with increased depressive symptoms among women in the workplace. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins