Featured Research

from universities, journals, and other organizations

Embryology: Scientists crack open 'black box' of development and see a 'rosette'

Date:
February 13, 2014
Source:
University of Cambridge
Summary:
We know much about how embryos develop, but one key stage -- implantation -- has remained a mystery. Now, scientists have discovered a way to study and film this 'black box' of development. This new method revealed that on its way from ball to cup, the blastocyst becomes a 'rosette' of wedge-shaped cells, a structure never before seen by scientists.

The mouse embryo's own stem cells organize themselves into a rosette-like arrangement as a pre-requisite for laying the foundations for the body when the embryo would implant into the uterus.
Credit: Magdalena Zernicka-Goetz and Ivan Bedzhov

We know much about how embryos develop, but one key stage -- implantation -- has remained a mystery. Now, scientists from Cambridge have discovered a way to study and film this 'black box' of development. Their results -- which will lead to the rewriting of biology text books worldwide -- are published in the journal Cell.

Related Articles


Embryo development in mammals occurs in two phases. During the first phase, pre-implantation, the embryo is a small, free-floating ball of cells called a blastocyst. In the second, post-implantation, phase the blastocyst embeds itself in the mother's uterus.

While blastocysts can be grown and studied outside the body, the same has not been true from implantation. And because embryos are so closely connected to their mothers, implantation has also been difficult to study in the womb.

According to study author Professor Magdalena Zernicka-Goetz of the University of Cambridge: "We know a lot about pre-implantation, but what happens after implantation -- and particularly the moment of implantation -- is an enigma."

Scientists are interested in studying implantation because the embryo undergoes huge changes in such a short space of time.

"During these two days, it goes from a relatively simple ball to a much larger, more complex cup-like structure, but exactly how that happens was a mystery -- a black box of development. That is why we needed to develop a method that would allow us to culture and study embryos during implantation," she explained.

Working with mouse cells, Professor Zernicka-Goetz and her colleague Dr Ivan Bedzhov succeeded in creating the right conditions outside the womb to study the implantation process.

To be able to support development, they created a system comprising a gel and medium that, as well as having the right chemical and biological properties, was of similar elasticity to uterine tissue. Crucially, this gel was transparent to optical light, allowing then to film the embryo during implantation.

This new method revealed that on its way from ball to cup, the blastocyst becomes a 'rosette' of wedge-shaped cells, a structure never before seen by scientists.

"It's a beautiful structure. This rosette is what a mouse looks like on the 4th day of its life, and most likely what we look like on the 7th day of ours, and it's fascinating how beautiful we are then, and how these small cells organise so perfectly to allow us to develop."

As well as answering a fundamental question in developmental biology, the new method will allow scientists to study embryo growth and development at implantation for the first time, which could help improve the success of IVF, and extend our knowledge of stem cells, which could advance their use in regenerative medicine.

The findings also mean developmental biology text books will need rewriting. "The text books make an educated guess of what happened during this part of development, but we now know that what I learned and what I teach my students about this was totally wrong," said Professor Zernicka-Goetz.


Story Source:

The above story is based on materials provided by University of Cambridge. The original story is licensed under a Creative Commons Licence. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ivan Bedzhov, Magdalena Zernicka-Goetz. Self-Organizing Properties of Mouse Pluripotent Cells Initiate Morphogenesis upon Implantation. Cell, 2014; DOI: 10.1016/j.cell.2014.01.023

Cite This Page:

University of Cambridge. "Embryology: Scientists crack open 'black box' of development and see a 'rosette'." ScienceDaily. ScienceDaily, 13 February 2014. <www.sciencedaily.com/releases/2014/02/140213142309.htm>.
University of Cambridge. (2014, February 13). Embryology: Scientists crack open 'black box' of development and see a 'rosette'. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2014/02/140213142309.htm
University of Cambridge. "Embryology: Scientists crack open 'black box' of development and see a 'rosette'." ScienceDaily. www.sciencedaily.com/releases/2014/02/140213142309.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com
Feast Your Eyes: Lamb Chop Sent Into Space from UK

Feast Your Eyes: Lamb Chop Sent Into Space from UK

Reuters - Light News Video Online (Nov. 25, 2014) Take a stab at this -- stunt video shows a lamb chop's journey from an east London restaurant over 30 kilometers into space. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Cambodian Capital's Only Working Elephant to Retire in Jungle

Cambodian Capital's Only Working Elephant to Retire in Jungle

AFP (Nov. 25, 2014) Phnom Penh's only working elephant was blessed by a crowd of chanting Buddhist monks Tuesday as she prepared for a life of comfortable jungle retirement after three decades of giving rides to tourists. Duration: 00:36 Video provided by AFP
Powered by NewsLook.com
Stray Dog Follows Adventure Racing Team for 6-Day Endurance Race

Stray Dog Follows Adventure Racing Team for 6-Day Endurance Race

Buzz60 (Nov. 24, 2014) A Swedish Adventure racing team travels to try and win a world title, but comes home with something way better: a stray dog that joined the team for much of the grueling 430-mile race. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins