Featured Research

from universities, journals, and other organizations

Potential solution for feeding, swallowing difficulties in children with digeorge syndrome, autism

Date:
February 19, 2014
Source:
George Washington University
Summary:
Research reveals new information on the pathogenesis of feeding and swallowing difficulties often found in children with neurodevelopmental disorders, including autism and intellectual disability.

Collaborative research out of the George Washington University (GW) reveals new information on the pathogenesis of feeding and swallowing difficulties often found in children with neurodevelopmental disorders, including autism and intellectual disability. Using an animal model of DiGeorge/22q11 Deletion Syndrome, a genetic disorder that causes autism and intellectual disability, the GW group found clear signs of early feeding and swallowing disruption, and underlying changes in brain development. The research, featured on the cover of Disease Models & Mechanisms, may even lead to a cure for these difficulties -- known as pediatric dysphagia.

"We found that the same mechanisms causing neurodevelopmental disorders are disrupting development in parts of the nervous system that control swallowing and feeding," said Anthony-Samuel LaMantia, Ph.D., professor of pharmacology and physiology at the GW School of Medicine and Health Sciences (SMHS) and director of the GW Institute for Neuroscience. "Cranial nerves, which control food intake and swallowing, aren't developing correctly, which likely contributes to mis-coordination. This is good news -- this is something we can fix."

Up to 80 percent of children with developmental disorders have difficulty ingesting, chewing, or swallowing food, leading to food aspiration, choking, or life-threatening respiratory infections. Despite its high co-incidence with developmental disorders, little was previously known about pediatric dysphagia.

"A lot of children with pediatric dysphagia tend to be sicker from birth onward. Making the health of these kids as stable as possible from birth onward would allow clinicians to pick up on developmental signs sooner, which are often masked by more immediate problems like having ear or respiratory infections, not sleeping or not gaining weight," said LaMantia. "The physiological stress caused by the complications of dysphagia early on likely exacerbates the fundamental behavior issues that will emerge later. A happy, healthy baby is often able to focus on observing and gathering information to drive important experience dependent changes in the brain. A sick baby has less time to do so, possibly making cognitive outcomes even worse."

These findings were a collaborative effort between LaMantia, and Sally Moody, Ph.D., professor of anatomy and regenerative biology at SMHS, with important contributions from Beverly Karpinski, a research scientist who works jointly with LaMantia and Moody; Thomas Maynard, Ph.D., associate research professor of pharmacology and physiology at SMHS and director of the GW Institute for Neuroscience Biomarkers Core; and Irene Zohn, Ph.D. associate professor of pediatrics and pharmacology and physiology and Investigator in the Center for Neuroscience Research at Children's National Medical Center.

LaMantia's lab had been working on issues surrounding disrupted development from DiGeorge/22q11Deletion Syndrome and Moody's lab had, over the course of her career, been working on issues specific to cranial nerve neurons and how they relate to the development of peripheral neurons and cranial facial targets. The combined expertise led to this discovery and will lead to future collaborations.


Story Source:

The above story is based on materials provided by George Washington University. Note: Materials may be edited for content and length.


Journal Reference:

  1. B. A. Karpinski, T. M. Maynard, M. S. Fralish, S. Nuwayhid, I. E. Zohn, S. A. Moody, A.-S. LaMantia. Dysphagia and disrupted cranial nerve development in a mouse model of DiGeorge (22q11) deletion syndrome. Disease Models & Mechanisms, 2013; 7 (2): 245 DOI: 10.1242/dmm.012484

Cite This Page:

George Washington University. "Potential solution for feeding, swallowing difficulties in children with digeorge syndrome, autism." ScienceDaily. ScienceDaily, 19 February 2014. <www.sciencedaily.com/releases/2014/02/140219124555.htm>.
George Washington University. (2014, February 19). Potential solution for feeding, swallowing difficulties in children with digeorge syndrome, autism. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2014/02/140219124555.htm
George Washington University. "Potential solution for feeding, swallowing difficulties in children with digeorge syndrome, autism." ScienceDaily. www.sciencedaily.com/releases/2014/02/140219124555.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins