Featured Research

from universities, journals, and other organizations

Oldest bit of crust firms up idea of cool early Earth

Date:
February 23, 2014
Source:
University of Wisconsin-Madison
Summary:
With the help of a tiny fragment of zircon extracted from a remote rock outcrop in Australia, the picture of how our planet became habitable to life about 4.4 billion years ago is coming into sharper focus. New research reveals data that confirms that Earth’s crust first formed just 160 million years after the formation of our solar system. It also confirms that the timeframe that the planet was a fiery ball covered in a magma ocean came earlier, and that in order to become habitable, Earth cooled and formed its crust during the first geologic eon of the planet. The research may help scientists to understand how other habitable planets may form.

This is a timeline of the history of our planet places the formation of the Jack Hills zircon and a "cool early Earth" at 4.4 billion years.
Credit: Andree Valley

With the help of a tiny fragment of zircon extracted from a remote rock outcrop in Australia, the picture of how our planet became habitable to life about 4.4 billion years ago is coming into sharper focus.

Writing today (Feb. 23, 2014) in the journal Nature Geoscience, an international team of researchers led by University of Wisconsin-Madison geoscience Professor John Valley reveals data that confirm the Earth’s crust first formed at least 4.4 billion years ago, just 160 million years after the formation of our solar system. The work shows, Valley says, that the time when our planet was a fiery ball covered in a magma ocean came earlier.

“This confirms our view of how the Earth cooled and became habitable,” says Valley, a geochemist whose studies of zircons, the oldest known terrestrial materials, have helped portray how the Earth’s crust formed during the first geologic eon of the planet. “This may also help us understand how other habitable planets would form.”

The new study confirms that zircon crystals from Western Australia’s Jack Hills region crystallized 4.4 billion years ago, building on earlier studies that used lead isotopes to date the Australian zircons and identify them as the oldest bits of the Earth’s crust. The microscopic zircon crystal used by Valley and his group in the current study is now confirmed to be the oldest known material of any kind formed on Earth.

The study, according to Valley, strengthens the theory of a “cool early Earth,” where temperatures were low enough for liquid water, oceans and a hydrosphere not long after the planet’s crust congealed from a sea of molten rock. “The study reinforces our conclusion that Earth had a hydrosphere before 4.3 billion years ago,” and possibly life not long after, says Valley.

The study was conducted using a new technique called atom-probe tomography that, in conjunction with secondary ion mass spectrometry, permitted the scientists to accurately establish the age and thermal history of the zircon by determining the mass of individual atoms of lead in the sample. Instead of being randomly distributed in the sample, as predicted, lead atoms in the zircon were clumped together, like “raisins in a pudding,” notes Valley.

The clusters of lead atoms formed 1 billion years after crystallization of the zircon, by which time the radioactive decay of uranium had formed the lead atoms that then diffused into clusters during reheating. “The zircon formed 4.4 billion years ago, and at 3.4 billion years, all the lead that existed at that time was concentrated in these hotspots,” Valley says. “This allows us to read a new page of the thermal history recorded by these tiny zircon time capsules.”

The formation, isotope ratio and size of the clumps — less than 50 atoms in diameter — become, in effect, a clock, says Valley, and verify that existing geochronology methods provide reliable and accurate estimates of the sample’s age. In addition, Valley and his group measured oxygen isotope ratios, which give evidence of early homogenization and later cooling of the Earth.

“The Earth was assembled from a lot of heterogeneous material from the solar system,” Valley explains, noting that the early Earth experienced intense bombardment by meteors, including a collision with a Mars-sized object about 4.5 billion years ago “that formed our moon, and melted and homogenized the Earth. Our samples formed after the magma oceans cooled and prove that these events were very early.”


Story Source:

The above story is based on materials provided by University of Wisconsin-Madison. The original article was written by Terry Devitt. Note: Materials may be edited for content and length.


Journal Reference:

  1. John W. Valley, Aaron J. Cavosie, Takayuki Ushikubo, David A. Reinhard, Daniel F. Lawrence, David J. Larson, Peter H. Clifton, Thomas F. Kelly, Simon A. Wilde, Desmond E. Moser, Michael J. Spicuzza. Hadean age for a post-magma-ocean zircon confirmed by atom-probe tomography. Nature Geoscience, 2014; DOI: 10.1038/ngeo2075

Cite This Page:

University of Wisconsin-Madison. "Oldest bit of crust firms up idea of cool early Earth." ScienceDaily. ScienceDaily, 23 February 2014. <www.sciencedaily.com/releases/2014/02/140223131616.htm>.
University of Wisconsin-Madison. (2014, February 23). Oldest bit of crust firms up idea of cool early Earth. ScienceDaily. Retrieved August 27, 2014 from www.sciencedaily.com/releases/2014/02/140223131616.htm
University of Wisconsin-Madison. "Oldest bit of crust firms up idea of cool early Earth." ScienceDaily. www.sciencedaily.com/releases/2014/02/140223131616.htm (accessed August 27, 2014).

Share This




More Earth & Climate News

Wednesday, August 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Calif. Quake Underscores Need for Early Warning

Calif. Quake Underscores Need for Early Warning

AP (Aug. 26, 2014) Researchers at UC Berkeley are testing a prototype of an earthquake early warning system that California is pursuing years after places like Mexico and Japan already have them up and running. (August 26) Video provided by AP
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Brazil Tries Genetically Modified Mosquitoes to Fight Dengue

Brazil Tries Genetically Modified Mosquitoes to Fight Dengue

AFP (Aug. 25, 2014) A factory in the industrial state of Sao Paulo produces genetically modified mosquitoes to fight dengue, a deadly tropical disease more prevalent in Brazil than anywhere else in the world. Duration: 00:57 Video provided by AFP
Powered by NewsLook.com
Raw: Prime Minister at Japan Landslide Site

Raw: Prime Minister at Japan Landslide Site

AP (Aug. 25, 2014) Japanese Prime Minister Shinzo Abe visited Hiroshima on Monday as rescuers expanded their search for dozens still missing from landslides around the western Japanese city that killed at least 50 people. (Aug. 25) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins