Featured Research

from universities, journals, and other organizations

Nanoparticles target anti-inflammatory drugs where needed

Date:
February 23, 2014
Source:
University of Illinois at Chicago
Summary:
A system for precisely delivering anti-inflammatory drugs to immune cells gone out of control, has been developed that spares the well-behaved counterpart cells in the body. The system uses nanoparticles made of tiny bits of protein designed to bind to unique receptors found only on neutrophils, a type of immune cell engaged in detrimental acute and chronic inflammatory responses. In chronic inflammation, neutrophils can pile up at the site of injury, sticking to the blood vessel walls and to each other and contributing to tissue damage.

Researchers at the University of Illinois at Chicago have developed a system for precisely delivering anti-inflammatory drugs to immune cells gone out of control, while sparing their well-behaved counterparts. Their findings were published online Feb. 23 in Nature Nanotechnology.

The system uses nanoparticles made of tiny bits of protein designed to bind to unique receptors found only on neutrophils, a type of immune cell engaged in detrimental acute and chronic inflammatory responses.

In a normal immune response, neutrophils circulating in the blood respond to signals given off by injured or damaged blood vessels and begin to accumulate at the injury, where they engulf bacteria or debris from injured tissue that might cause infection. In chronic inflammation, neutrophils can pile up at the site of injury, sticking to the blood vessel walls and to each other and contributing to tissue damage.

Adhesion of neutrophils to blood vessel walls is a major factor in acute lung injury, where it can impair the exchange of gases between the lungs and blood, leading to severe breathing problems. If untreated, the disease has a 50 percent mortality rate in intensive care units.

Corticosteroids and non-steroidal anti-inflammatory drugs used to treat inflammatory diseases are "blunt instruments that affect the whole body and carry some significant side effects," says Asrar B. Malik, the Schweppe Family Distinguished Professor and head of pharmacology in the UIC College of Medicine, who is lead author of the paper.

Neutrophils that are stuck to blood vessels or clumped together have unique receptors on their surface that circulating neutrophils lack. Malik and his colleagues designed a nanoparticle to take advantage by embedding it with an anti-inflammatory drug. The nanoparticles bind to the receptors, and the neutrophils internalize the nanoparticle. Once inside, the anti-inflammatory drug works to "unzip" the neutrophil and allow it to re-enter the bloodstream.

"The nanoparticle is very much like a Trojan horse," Malik said. "It binds to a receptor found only on these activated, sticky neutrophils, and the cell automatically engulfs whatever binds there. Because circulating neutrophils lack these receptors, the system is incredibly precise and targets only those immune cells that are actively contributing to inflammatory disease."

Malik, along with research assistant professor Zhenjia Wang and assistant professor Jaehyung Cho, used intra-vital microscopy to follow nanoparticles in real-time in mice with induced vascular inflammation. The nanoparticles were labeled with a fluorescent dye, and could be seen binding to and entering neutrophils clustered together on the inner walls of capillaries, but not binding to freely circulating neutrophils. If the researchers attached a drug called piceatannol, which interferes with cell-cell adhesion, to the nanoparticles, they observed that clusters of neutrophils that took up the particles detached from each other and from the blood vessel wall. The cells were in effect neutralized and could no longer contribute to inflammation at the site of an injury.

The findings, Malik said, "show that nanoparticles can be used to deliver drugs in a highly targeted, specific fashion to activated immune cells and could be designed to treat a broad range of inflammatory diseases."


Story Source:

The above story is based on materials provided by University of Illinois at Chicago. Note: Materials may be edited for content and length.


Cite This Page:

University of Illinois at Chicago. "Nanoparticles target anti-inflammatory drugs where needed." ScienceDaily. ScienceDaily, 23 February 2014. <www.sciencedaily.com/releases/2014/02/140223131713.htm>.
University of Illinois at Chicago. (2014, February 23). Nanoparticles target anti-inflammatory drugs where needed. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2014/02/140223131713.htm
University of Illinois at Chicago. "Nanoparticles target anti-inflammatory drugs where needed." ScienceDaily. www.sciencedaily.com/releases/2014/02/140223131713.htm (accessed April 17, 2014).

Share This



More Health & Medicine News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com
Thousands Of Vials Of SARS Virus Go Missing

Thousands Of Vials Of SARS Virus Go Missing

Newsy (Apr. 16, 2014) A research institute in Paris somehow misplaced more than 2,000 vials of the deadly SARS virus. Video provided by Newsy
Powered by NewsLook.com
Formerly Conjoined Twins Released From Dallas Hospital

Formerly Conjoined Twins Released From Dallas Hospital

Newsy (Apr. 16, 2014) Conjoined twins Emmett and Owen Ezell were separated by doctors in August. Now, nearly nine months later, they're being released from the hospital. Video provided by Newsy
Powered by NewsLook.com
Ebola Outbreak Now Linked To 121 Deaths

Ebola Outbreak Now Linked To 121 Deaths

Newsy (Apr. 15, 2014) The ebola virus outbreak in West Africa is now linked to 121 deaths. Health officials fear the virus will continue to spread in urban areas. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins