Featured Research

from universities, journals, and other organizations

Success in generating skyrmion molecules and driving them under low current density

Date:
February 24, 2014
Source:
National Institute for Materials Science
Summary:
Scientists have succeeded for the first time in generating and visualizing electron spin vortex state "skyrmion molecules" with topological charge 2 within a thin film of "La1+2xSr2-2xMn2O7," a layered manganese oxide which is a ferromagnetic material with uniaxial anisotropy.

Skyrmion and skyrmion molecule a: Skyrmion The arrows indicate the directions of the electron spins. The electron spins in a skyrmion head toward the center, while spinning in a vortex shape. The spin directions at the center and at the outermost periphery are vertically opposite. b: Schematic diagram of a skyrmion molecule c: Skyrmion molecule observed within a ferromagnetic thin film in an experiment The plus and minus signs respectively indicate clockwise and counterclockwise spin direction.
Credit: Image courtesy of National Institute for Materials Science

RIKEN (President: Ryoji Noyori), the University of Tokyo (President: Junichi Hamada), and the National Institute for Materials Science (NIMS; President: Sukekatsu Ushioda) succeeded for the first time in generating and visualizing electron spin vortex state "skyrmion molecules" with topological charge 2 within a thin film of "La1+2xSr2-2xMn2O7," a layered manganese oxide which is a ferromagnetic material with uniaxial anisotropy. While the current density required for driving domain walls within a ferromagnetic system is about 1 billion amperes per square meter, they managed to drive those skyrmion molecules with one-thousandth that density.

Related Articles


This result was achieved by a joint research group led by Dr. Xiuzhen Yu, Senior Research Scientist, and Dr. Yoshinori Tokura, Group Director (Professor at the School of Engineering, the University of Tokyo) of the Strong Correlation Physics Research Group, RIKEN Center for Emergent Matter Science (Center Director: Dr. Yoshinori Tokura), and Dr. Koji Kimoto, Unit Director of the Surface Physics and Structure Unit, Advanced Key Technologies Division (Division Director: Dr. Daisuke Fujita), NIMS.

Magnetic memory devices, which use the direction of electron spins within materials as magnetic information, are considered to be promising next-generation devices with high-speed and non-volatile properties. In recent years, magnetic memory devices that manipulate domain walls within ferromagnetic nanowires by using spin polarized electric current have been intensively studied. However, moving domain walls requires a large current density of at least about 1 billion amperes per square meter, and the large power consumption presented a problem. Therefore, a way to drive them under smaller current density had been sought.

In this respect, attention has been paid to "skyrmions," which are magnetic topological textures in which electron spins are aligned in a vortex shape. Unlike ferromagnetic domain walls, skyrmions have no intrinsic pinning sites and can avoid obstacles in the device. Thus, they can be driven under smaller current density than ferromagnetic domain walls. A single skyrmion has topological charge 1, which is equivalent to 1 bit of information.

Skyrmions with higher topological charge had been predicted theoretically, but they had never been actually observed. The joint research group succeeded for the first time in generating skyrmion molecules with topological charge 2 in layered manganese oxide La1+2xSr2-2xMn2O7 while controlling the uniaxial anisotropy and the externally-applied magnetic field, and in driving them with one-thousandth the current density conventionally required for driving ferromagnetic domain walls. Such findings will bring about great development in designing novel magnetic memory devices with high-density and low power consumption with use of skyrmions.


Story Source:

The above story is based on materials provided by National Institute for Materials Science. Note: Materials may be edited for content and length.


Cite This Page:

National Institute for Materials Science. "Success in generating skyrmion molecules and driving them under low current density." ScienceDaily. ScienceDaily, 24 February 2014. <www.sciencedaily.com/releases/2014/02/140224204739.htm>.
National Institute for Materials Science. (2014, February 24). Success in generating skyrmion molecules and driving them under low current density. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2014/02/140224204739.htm
National Institute for Materials Science. "Success in generating skyrmion molecules and driving them under low current density." ScienceDaily. www.sciencedaily.com/releases/2014/02/140224204739.htm (accessed October 31, 2014).

Share This



More Matter & Energy News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Jaguar Land Rover Opens $800 Million Factory in Britain

Jaguar Land Rover Opens $800 Million Factory in Britain

AFP (Oct. 30, 2014) British luxury car manufacturer Jaguar Land Rover opened a $800 million engine manufacturing centre in western England, creating 1,400 jobs. Duration: 00:45 Video provided by AFP
Powered by NewsLook.com
SkyCruiser Concept Claims to Solve Problem With Flying Cars

SkyCruiser Concept Claims to Solve Problem With Flying Cars

Buzz60 (Oct. 30, 2014) A start-up company called Krossblade says its SkyCruiser concept flying car solves the problem with most flying car concepts. Mara Montalbano (@maramontalbano) explains. Video provided by Buzz60
Powered by NewsLook.com
Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Reuters - Innovations Video Online (Oct. 29, 2014) A Swedish amputee who became the first person to ever receive a brain controlled prosthetic arm is able to manipulate and handle delicate objects with an unprecedented level of dexterity. The device is connected directly to his bone, nerves and muscles, giving him the ability to control it with his thoughts. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Robots Get Funky on the Dance Floor

Robots Get Funky on the Dance Floor

AP (Oct. 29, 2014) Dancing, spinning and fighting robots are showing off their agility at "Robocomp" in Krakow. (Oct. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins