Featured Research

from universities, journals, and other organizations

Rare form of nitrogen detected in comet ISON

Date:
February 25, 2014
Source:
National Astronomical Observatory of Japan
Summary:
Astronomers observed the Comet ISON during its bright outburst in the middle of November 2013. Subaru Telescope's High Dispersion Spectrograph has detected two rare forms of nitrogen in the comet ISON. Their results support the hypothesis that there were two distinct reservoirs of nitrogen the massive, dense cloud ("solar nebula") from which our Solar System may have formed and evolved.

Close-up of spectra of NH2 emission lines (of the same transitions for both 14NH2 and 15NH2) in Comet ISON, showing the difference in wavelengths and relative intensity between the isotopes. The red and green-dashed lines indicate the observed spectrum. The blue line indicates 15NH2, clearly detected for the first time.
Credit: Image courtesy of National Astronomical Observatory of Japan

A team of astronomers, led by Ph.D. candidate Yoshiharu Shinnaka and Professor Hideyo Kawakita, both from Kyoto Sangyo University, successfully observed the Comet ISON during its bright outburst in the middle of November 2013. Subaru Telescope's High Dispersion Spectrograph (HDS) detected two forms of nitrogen--14NH2 and 15NH2--in the comet. This is the first time that astronomers have reported a clear detection of the relatively rare isotope 15NH2 in a single comet and also measured the relative abundance of two different forms of nitrogen ("nitrogen isotopic ratio") of cometary ammonia (NH3). Their results support the hypothesis that there were two distinct reservoirs of nitrogen the massive, dense cloud ("solar nebula") from which our Solar System may have formed and evolved.

Related Articles


Why did the team focus on studying these different forms of nitrogen in the comet? Comets are relatively small Solar System objects composed of ice and dust, which formed 4.6 billion years ago in the solar nebula when our Solar System was in its infancy. Because they usually reside in cold regions far from the Sun, e.g., the Kuiper belt and Oort cloud, they probably preserve information about the physical and chemical conditions in the early Solar System. Different forms and abundances of the same molecule provide information about their source and evolution. Were they from a stellar nursery (a primordial interstellar cloud) or from a distinctive cloud (solar nebula) that may have formed our Solar System's star, the Sun? Scientists do not yet understand very well how cometary molecules separate into isotopes with different abundances. Isotopes of nitrogen from ammonia (NH3) may hold the key.

Ammonia (NH3) is a particularly important molecule, because it is the most abundant nitrogen-bearing volatile (a substance that vaporizes) in cometary ice and one of the simplest molecules in an amino group (-NH2) closely related to life. This means that these different forms of nitrogen could link the components of interstellar space to life on Earth as we know it.

Since ammonia is the major carrier of nitrogen in a comet, it is necessary to clear it from the relative abundance of its isotopes to understand how 15NH2 separates in cometary molecules. However, the direct detection of cometary ammonia is difficult, and there are only a few reports of its clear detection. Therefore, the team concentrated on studying the form of NH2 developed after the ammonia was broken down by the light ("photodissociation") in the cometary coma. The team was fortunate to observe the comet as it neared the Sun, when its icy composition was evaporating. They were also fortunate that NH2, a derivative of ammonia (NH3), is easy to observe in the optical wavelength, and the relative abundance of nitrogen isotopes of cometary ammonia is probably close to that of NH2.

The team used Subaru Telescope's HDS to successfully observe Comet ISON on November 15th and 16th when the comet had its bright outburst that began on November 14th. The observation clearly detected 15NH2 from Comet ISON, and the team inferred that the ratio of cometary ammonia of 14N/15N (13938) is consistent with the average (14N/15N~130) of that from the spectra of 12 other comets. In other words, Comet ISON is typical in its relative abundance of 14N/15N in cometary ammonia.

These findings support the hypothesis that there were two distinct reservoirs of nitrogen in the solar nebula: 1) primordial N2 gas having a protosolar value of 14N/15N, and 2) less volatile and probably solid molecules having a ratio of about 14N/15N~150 in the solar nebula. In the case of a dense molecular cloud core, the isotopic ratio of hydrogen cyanide (HCN) is similar to that of comets while its ratio in ammonia is different from its cometary value.

This may mean that the ammonia formed in an environment of a low temperature dust surface, not in the gas of the molecular cloud. Laboratory experiments show that various complex molecules can form on the surface of low temperature dust. If the ammonia molecule formed on the low temperature dust surface, the cometary nucleus could contain a complex molecule that relates to the origin of life, in addition to the ammonia. If this is so, it raises the possibility that the comet brought these materials to Earth.

In the future, the team would like to increase the sample of comets for which nitrogen isotopic ratios of cometary ammonia have been determined. They would also like to carry out laboratory measurements of 15NH2 to obtain more precise isotopic ratios. On a larger scale, the team hopes to investigate the origin of Comet ISON and the mechanisms that triggered its outburst so that we can better understand the evolution of the Solar System.


Story Source:

The above story is based on materials provided by National Astronomical Observatory of Japan. Note: Materials may be edited for content and length.


Journal Reference:

  1. Yoshiharu Shinnaka, Hideyo Kawakita, Hitomi Kobayashi, Masayoshi Nagashima, Daniel C. Boice. 14NH2/15NH2RATIO IN COMET C/2012 S1 (ISON) OBSERVED DURING ITS OUTBURST IN 2013 NOVEMBER. The Astrophysical Journal, 2014; 782 (2): L16 DOI: 10.1088/2041-8205/782/2/L16

Cite This Page:

National Astronomical Observatory of Japan. "Rare form of nitrogen detected in comet ISON." ScienceDaily. ScienceDaily, 25 February 2014. <www.sciencedaily.com/releases/2014/02/140225101145.htm>.
National Astronomical Observatory of Japan. (2014, February 25). Rare form of nitrogen detected in comet ISON. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2014/02/140225101145.htm
National Astronomical Observatory of Japan. "Rare form of nitrogen detected in comet ISON." ScienceDaily. www.sciencedaily.com/releases/2014/02/140225101145.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Space & Time News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Scientists Find Invisible Space Shield Protecting Earth

Scientists Find Invisible Space Shield Protecting Earth

Newsy (Nov. 27, 2014) An invisible barrier is keeping dangerous super fast electrons from interfering with our atmosphere, but scientists aren't entirely sure how. Video provided by Newsy
Powered by NewsLook.com
NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Feast Your Eyes: Lamb Chop Sent Into Space from UK

Feast Your Eyes: Lamb Chop Sent Into Space from UK

Reuters - Light News Video Online (Nov. 25, 2014) Take a stab at this -- stunt video shows a lamb chop's journey from an east London restaurant over 30 kilometers into space. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Soyuz Spacecraft Docks With International Space Station: NASA

Soyuz Spacecraft Docks With International Space Station: NASA

AFP (Nov. 24, 2014) A Russian Soyuz spacecraft carrying Italy's first female astronaut safely docks with the International Space Station, according to NASA. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins