Featured Research

from universities, journals, and other organizations

Creating complex nanoparticles in one easy step

Date:
February 26, 2014
Source:
Okinawa Institute of Science and Technology - OIST
Summary:
Nanoparticle research is huge. That is, the study of nanoparticles, very miniscule objects that act as a unit with specific properties, is a very popular area of study. With implications in many avenues of science, from biomedicine to laser research, the study of how to create nanoparticles with desirable properties is becoming increasingly important. Scientists have now made a breakthrough in synthesizing biomedically relevant nanoparticles.

Hybrid nanoparticles with four and three multicomponent cores (Iron-Silver) embedded in a biocompatible shell (Silicon).
Credit: OIST

Nanoparticle research is huge. That is, the study of nanoparticles, very miniscule objects that act as a unit with specific properties, is a very popular area of study. With implications in many avenues of science, from biomedicine to laser research, the study of how to create nanoparticles with desirable properties is becoming increasingly important. Maria Benelmekki and researchers in Mukhles Sowwan's Nanoparticles by Design Unitrecently made a breakthrough in synthesizing biomedically relevant nanoparticles.

They published their findings in the journal Nanoscale.

Nanoparticles can be used in medicine for imaging during diagnosis and treatment. Other applications include targeted drug delivery and wound healing. However, creating nanoparticles for use in biomedicine presents many challenges. Currently, nanoparticles are primarily made using chemicals, which is a problem when using them for medical purposes because these chemicals may be harmful to the patient. Additional issues are that the fabrication process takes several steps, the size of the particles is difficult to control and the particles can only survive in storage for a relatively short amount of time. Benelmekki and colleagues have created biocompatible ternary nanoparticles, meaning they consist of 3 parts that each exhibit a useful property, and have done it without the use of chemicals. The new method allows for easy manipulation of the size of the particles to tailor-make them for a variety of uses all in one step. The researchers have also developed a method that provides better stability for longer storage.

The nanoparticles in the study are made of a core of iron and silver. These two elements imbue them with two important properties; they are magnetic and can be imaged. The iron makes them magnetic, allowing researchers to move them around. The silver is excellent for imaging because excitation of silver creates a larger detection signal than the particle itself, meaning it can be viewed with conventional microscopy or medical imaging devices despite its tiny size. The third part of the nanoparticles is a silicon shell, which surrounds the iron-silver core. The silicon is biocompatible, meaning it can go into a patient without creating complications, it prevents the core from being broken down and it can be easily manipulated for use in a variety of biomedical applications. Additionally, the nanoparticles also have superparamagnetic behavior, meaning they are only magnetic when a magnetic field is applied, so their magnetic property is inducible.

The ability to easily create stable, customizably sized nanoparticles with multiple functionalities, without the use of chemicals, in one step, is an exciting breakthrough. All of this work was possible because of the extensive expertise of the members of the unit in materials science, and their skills to work in a multidisciplinary environment. The implications of the work are potentially vast. Benelmekki says, "The ternary nanoparticles can be used in different applications, such as a contrast agent in MRI, biomagnetic sensors, hyperthermia for cancer treatment and magnetically targeted delivery and transfection." Maybe the next time you go in for medical imaging or treatment, nanoparticles designed here at OIST will be part of the treatment.


Story Source:

The above story is based on materials provided by Okinawa Institute of Science and Technology - OIST. Note: Materials may be edited for content and length.


Journal Reference:

  1. Maria Benelmekki@oist.jp, Murtaza Bohra, Jeong-Hwan Kim Kim, Jerome Vernieres, Rosa Rivas, panagiotis grammatikopoulos, Mukhles Sowwan. Facile Single-Step Synthesis of Ternary Multicore Magneto-Plasmonic Nanoparticles. Nanoscale, 2014; DOI: 10.1039/C3NR06114K

Cite This Page:

Okinawa Institute of Science and Technology - OIST. "Creating complex nanoparticles in one easy step." ScienceDaily. ScienceDaily, 26 February 2014. <www.sciencedaily.com/releases/2014/02/140226074823.htm>.
Okinawa Institute of Science and Technology - OIST. (2014, February 26). Creating complex nanoparticles in one easy step. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2014/02/140226074823.htm
Okinawa Institute of Science and Technology - OIST. "Creating complex nanoparticles in one easy step." ScienceDaily. www.sciencedaily.com/releases/2014/02/140226074823.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
7 Ways to Use Toothpaste: Howdini Hacks

7 Ways to Use Toothpaste: Howdini Hacks

Howdini (July 30, 2014) Fresh breath and clean teeth are great, but have you ever thought, "my toothpaste could be doing more". Well, it can! Lots of things! Howdini has 7 new uses for this household staple. Video provided by Howdini
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins