Featured Research

from universities, journals, and other organizations

Optical nano-tweezers control nano-objects: Trap and move individual nano-object in three dimensions using only light

Date:
March 2, 2014
Source:
ICFO-The Institute of Photonic Sciences
Summary:
Researchers have invented nano-optical tweezers capable of trapping and moving an individual nano-object in three dimensions using only the force of light. Using this approach, they have demonstrated trapping and 3-D displacement of specimens as small as a few tens of nanometers using an extremely small, non-invasive laser intensity.

The image on the left is an electron beam microscopy image of the extremity of the plasmon nano-tweezers. The image on the right is a sketch illustrating the trapping of a nanoparticle in the bowtie aperture.
Credit: Institute of Photonic Sciences

As science and technology go nano, scientists search for new tools to manipulate, observe and modify the "building blocks" of matter at the nanometer scale. With this in mind, the recent publication in Nature Nanotechnology in which ICFO researchers demonstrate for the first time the ability to use near-field optical tweezers to trap a nano-size object and manipulate it in the 3 dimensions of space, is an exciting achievement. Romain Quidant, ICREA Professor and leader at ICFO of the Plasmon Nano-Optics research group comments that "this technique could revolutionize the field of nanoscience since, for the first time, we have shown that it is possible to trap, 3D manipulate and release a single nano-object without exerting any mechanical contact or other invasive action."

Related Articles


Imagine an elephant trying to grab an object the size of a needle with its gigantic hoof? Clearly this would be a tremendous if not impossible challenge because of the elephant's enormous size in comparison to that of the needle. Now imagine that our needle is a single molecule or tiny object about the size of a few nanometers and we, with our conventional tools, need to trap it and manipulate it in in order to, for example, understand its implication in the development of a disease. We have the same problem, first because a conventional optical microscope is not capable of visualizing a single molecule and second, because the physical limitations of our conventional tweezers are simply not capable of grasping or manipulating such small objects.

Invented in Bell Labs in the 80's, the original optical trapping demonstrated great capability to trap and manipulate small objects of micrometer size dimensions using laser light. By shining a laser light through a lens, it is possible to focus light in a tiny spot, creating an attractive force due to the gradient of the light intensity of the laser and thus attracting an object/specimen and maintaining it in the spot/focus.

While Optical tweezers have changed forever the fields of both biology and quantum optics, the technique has considerable limitations, one of which being its inability to directly trap objects smaller than a few hundreds of nanometers. This drawback prompted the pursuit of new approaches of nano-tweezers based on plasmonics, capable of trapping nano-scale objects such as proteins or nanoparticles without overheating and damaging the specimen. A few years ago, ICFO researchers demonstrated that, by focusing light on a very small gold nano-structure lying on a glass surface which acts as a nano-lens, one can trap a specimen at the vicinity of the metal where the light is concentrated. This proof of concept was limited to demonstrate the mechanism but did not enable any 3D manipulation needed for practical applications.

Now researchers at ICFO have taken this a crucial step further by implementing the concept of plasmonic nano-tweezers at the extremity of a mobile optical fiber, nano-engineered with a bowtie-like gold aperture. Using this approach, they have demonstrated trapping and 3D displacement of specimens as small as a few tens of nanometers using an extremely small, non-invasive laser intensity. Central to the great potential of this technique is that both trapping and monitoring of the trapped specimen can be done through the optical fiber, performing the manipulation of nano-objects in a simple and manageable way outside of the physics research lab.

This technique opens a plethora of new research directions requiring non-invasive manipulation of objects at the single molecule/virus level. It is potentially attractive in the field of medicine as a tool to further understand the biological mechanisms behind the development of diseases. Likewise, it holds promise in the context of nanotechnologies to assemble future miniature devices, among other exciting potential applications.


Story Source:

The above story is based on materials provided by ICFO-The Institute of Photonic Sciences. Note: Materials may be edited for content and length.


Journal Reference:

  1. J. Berthelot, S. S. Aćimović, M. L. Juan, M. P. Kreuzer, J. Renger, R. Quidant. Three-dimensional manipulation with scanning near-field optical nanotweezers. Nature Nanotechnology, 2014; DOI: 10.1038/NNANO.2014.24

Cite This Page:

ICFO-The Institute of Photonic Sciences. "Optical nano-tweezers control nano-objects: Trap and move individual nano-object in three dimensions using only light." ScienceDaily. ScienceDaily, 2 March 2014. <www.sciencedaily.com/releases/2014/03/140302143626.htm>.
ICFO-The Institute of Photonic Sciences. (2014, March 2). Optical nano-tweezers control nano-objects: Trap and move individual nano-object in three dimensions using only light. ScienceDaily. Retrieved November 22, 2014 from www.sciencedaily.com/releases/2014/03/140302143626.htm
ICFO-The Institute of Photonic Sciences. "Optical nano-tweezers control nano-objects: Trap and move individual nano-object in three dimensions using only light." ScienceDaily. www.sciencedaily.com/releases/2014/03/140302143626.htm (accessed November 22, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Saturday, November 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

AFP (Nov. 21, 2014) Toyota presented its hydrogen fuel-cell compact car called "Mirai" to US consumers at the Los Angeles auto show. The car should go on sale in 2015 for around $60.000. It combines stored hydrogen with oxygen to generate its own power. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Google Announces Improvements To Balloon-Borne Wi-Fi Project

Google Announces Improvements To Balloon-Borne Wi-Fi Project

Newsy (Nov. 21, 2014) In a blog post, Google said its balloons have traveled 3 million kilometers since the start of Project Loon. Video provided by Newsy
Powered by NewsLook.com
NSA Director: China Can Damage US Power Grid

NSA Director: China Can Damage US Power Grid

AP (Nov. 20, 2014) China and "one or two" other countries are capable of mounting cyberattacks that would shut down the electric grid and other critical systems in parts of the United States, according to Adm. Michael Rogers, director of the National Security Agency and hea Video provided by AP
Powered by NewsLook.com
Latest Minivan Crash Tests Aren't Pretty

Latest Minivan Crash Tests Aren't Pretty

Newsy (Nov. 20, 2014) Five minivans were put to the test in head-on crash simulations by the Insurance Institute for Highway Safety. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins