Featured Research

from universities, journals, and other organizations

Crystals ripple in response to light: First propagating surface phonon polaritons in a van der Waals crystal

Date:
March 6, 2014
Source:
University of California - San Diego
Summary:
Minuscule waves that propagate across atom -- thin layers of crystal could carry information, light, and heat in nanoscale devices. For the first time, the frequency and amplitude of these waves, called surface phonon polaritons, can be tuned by altering the number of layers of crystals, and they travel far making practical applications for these signals feasible.

This image shows surface phonon polaritons launched by infrared light propagate across layers of hexagonal boron nitride, a van der Waals crystal.
Credit: Siyuan Dai

Light can trigger coordinated, wavelike motions of atoms in atom-thin layers of crystal, scientists have shown. The waves, called phonon polaritons, are far shorter than light waves and can be "tuned" to particular frequencies and amplitudes by varying the number of layers of crystal, they report in the early online edition of Science March 7.

These properties -- observed in this class of material for the first time -- open the possibility of using polaritons to convey information in tight spaces, create images at far finer resolution than is possible with light, and manage the flow of heat in nanoscale devices.

"A wave on the surface of water is the closest analogy," said Dimitri Basov, professor of physics at the University of California, San Diego, who led the project. "You throw a stone and you launch concentric waves that move outward. This is similar. Atoms are moving. The triggering event is illumination with light."

The team used infrared light to launch phonon polaritons across a material called hexagonal boron nitride -- crystals that form sheet-like layers held together by the weakest of chemical bonds.

Siyuan Dai, a graduate student in Basov's research group who was responsible for much of the experimental work and is the first author of the report, focused an infrared laser on the tip of an atomic-force microscope as it scanned across this material, registering motions in the crystalline lattice.

The measurements revealed interference patterns created as the traveling waves reached edges of the material and reflected back. The amplitude and frequency of the waves depended on the number of layers in the crystal. Both properties will prove useful in the design of nanodevices.

"You can bounce these waves off edges. You can bounce them off defects. You can play all sorts of cool tricks with them. And of course, you can design the wavelength and amplitude of these oscillations in a way that suits your purpose," Basov said.

The finding was something of a surprise. Boron nitride is an insulator used as a support structure for other materials, like graphene, which this group recently showed could support waves of electron densities called plasmon polaritons. Although similarly compact, plasmon polaritons rapidly dissipate.

"Because these materials are insulators, there is no electronic dissipation. So these waves travel further," Basov said. "We didn't expect them to be long-lived, but we are pleased that they are. It's becoming kind of practical."


Story Source:

The above story is based on materials provided by University of California - San Diego. The original article was written by Susan Brown. Note: Materials may be edited for content and length.


Journal Reference:

  1. S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. Mcleod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, D. N. Basov. Tunable Phonon Polaritons in Atomically Thin van der Waals Crystals of Boron Nitride. Science, 2014 DOI: 10.1126/science.1246833

Cite This Page:

University of California - San Diego. "Crystals ripple in response to light: First propagating surface phonon polaritons in a van der Waals crystal." ScienceDaily. ScienceDaily, 6 March 2014. <www.sciencedaily.com/releases/2014/03/140306142755.htm>.
University of California - San Diego. (2014, March 6). Crystals ripple in response to light: First propagating surface phonon polaritons in a van der Waals crystal. ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/2014/03/140306142755.htm
University of California - San Diego. "Crystals ripple in response to light: First propagating surface phonon polaritons in a van der Waals crystal." ScienceDaily. www.sciencedaily.com/releases/2014/03/140306142755.htm (accessed August 22, 2014).

Share This




More Matter & Energy News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins