Featured Research

from universities, journals, and other organizations

Signal to spread: Potent driver of cancer metastasis identified

Date:
March 10, 2014
Source:
The Wistar Institute
Summary:
An international team of researchers has discovered and defined LIMD2, a protein that can drive metastasis, the process where tumors spread throughout the body. They have also developed and patented a monoclonal antibody that may one day be used as a prognostic test to see if tumors have LIMD2, and plans are underway to create inhibitors -- potential drugs that may target cells that produce LIMD2.

According to Rauscher, LIMD2 is part of a family of proteins that communicate signals to the cell nucleus from the cytoskeleton of the cell—the structural scaffolding that supports the cell. Scientists have looked to these proteins as potential drivers of metastasis since they control signals that regulate how the cell interacts with nearby cells.
Credit: Image courtesy of The Wistar Institute

An international team of researchers led by scientists at The Wistar Institute have discovered and defined LIMD2, a protein that can drive metastasis, the process where tumors spread throughout the body.

Their study, published in the March issue of the journal Cancer Research, defines the structure of LIMD2 and correlates the protein in metastatic bladder, melanoma, breast, and thyroid tumors. Wistar scientists have also developed and patented a monoclonal antibody that may one day be used as a prognostic test to see if tumors have LIMD2, and plans are underway to create inhibitors -- potential drugs that may target cells that produce LIMD2.

"This is the result of a five year effort to characterize LIMD2, which is a new protein that we found to be expressed only in metastatic lesions, and not in the primary tumor or in normal tissues or organs," said Frank Rauscher, III, Ph.D., a professor in The Wistar Institute Cancer Center. "LIMD2 is a great candidate for targeting with a drug, which would inhibit the ability of these cells to leave a primary tumor and to colonize other organs."

According to Rauscher, LIMD2 is part of a family of proteins that communicate signals to the cell nucleus from the cytoskeleton of the cell -- the structural scaffolding that supports the cell. Scientists have looked to these proteins as potential drivers of metastasis since they control signals that regulate how the cell interacts with nearby cells, including how cells may migrate and adhere to other tissues, which are traits tumors use to metastasize. LIMD2, in particular, is a key component to a chain of chemical events that control cell motility, or movement, which is a defining characteristic of metastasis, Rauscher says.

"Cancer metastasis is really the final frontier in cancer medicine, because metastasis kills," Rauscher said. "We can treat a primary tumor, usually successfully, with surgery, drugs, chemotherapy or radiation, but once the cancer spreads to organs throughout the body it frequently becomes unstoppable."

"We contend that LIMD2 is a marker that could help physicians profile tumors, and a potential drug target that could yield a potent therapy for a variety of advanced cancers, perhaps in combination with existing or emerging therapies," Rauscher said.

LIMD2 had earlier been identified as a biomarker for papillary thyroid cancer metastasis and, as a member of the a family of proteins known to be active in both the cell's nucleus and cytoplasm, piqued the interest of the Rauscher laboratory. Their studies demonstrated that LIMD2 appeared in abundance in samples of metastatic tumors, but were rarely expressed by primary tumors or healthy cells.

To further characterize the structure and function of LIMD2, the Rauscher laboratory collaborated with scientists across The Wistar Institute Cancer Center and scientists from around the world. They developed a structural model of the LIMD2 protein and demonstrated that the protein interacted with integrin-linked kinase (ILK), an enzyme with critical importance to the process of cellular movement, proliferation, and metastasis. Computer modeling analysis revealed that LIMD2 binds to ILK, and further studies demonstrated that LIMD2 promotes ILK activity. The "pocket" where LIMD2 binds to ILK, the researchers say, could be a promising target for a small molecule-based drug inhibitor.


Story Source:

The above story is based on materials provided by The Wistar Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. H. Peng, M. Talebzadeh-Farrooji, M. J. Osborne, J. W. Prokop, P. C. McDonald, J. Karar, Z. Hou, M. He, E. Kebebew, T. Orntoft, M. Herlyn, A. J. Caton, W. Fredericks, B. Malkowicz, C. S. Paterno, A. S. Carolin, D. W. Speicher, E. Skordalakes, Q. Huang, S. Dedhar, K. L. B. Borden, F. J. Rauscher. LIMD2 Is a Small LIM-Only Protein Overexpressed in Metastatic Lesions That Regulates Cell Motility and Tumor Progression by Directly Binding to and Activating the Integrin-Linked Kinase. Cancer Research, 2014; 74 (5): 1390 DOI: 10.1158/0008-5472.CAN-13-1275

Cite This Page:

The Wistar Institute. "Signal to spread: Potent driver of cancer metastasis identified." ScienceDaily. ScienceDaily, 10 March 2014. <www.sciencedaily.com/releases/2014/03/140310141117.htm>.
The Wistar Institute. (2014, March 10). Signal to spread: Potent driver of cancer metastasis identified. ScienceDaily. Retrieved September 16, 2014 from www.sciencedaily.com/releases/2014/03/140310141117.htm
The Wistar Institute. "Signal to spread: Potent driver of cancer metastasis identified." ScienceDaily. www.sciencedaily.com/releases/2014/03/140310141117.htm (accessed September 16, 2014).

Share This



More Health & Medicine News

Tuesday, September 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

President To Send 3,000 Military Personnel To Fight Ebola

President To Send 3,000 Military Personnel To Fight Ebola

Newsy (Sep. 16, 2014) President Obama is expected to send 3,000 troops to West Africa as part of the effort to contain Ebola's spread. Video provided by Newsy
Powered by NewsLook.com
Man Floats for 31 Hours in Gulf Waters

Man Floats for 31 Hours in Gulf Waters

AP (Sep. 16, 2014) A Texas man is lucky to be alive after he and three others floated for more than a day in the Gulf of Mexico when their boat sank during a fishing trip. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

AFP (Sep. 16, 2014) Since the arrival of Ebola in Ivory Coast, Ivorians have been abandoning their pets, particularly monkeys, in the fear that they may transmit the virus. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com
Study Links Male-Pattern Baldness To Prostate Cancer

Study Links Male-Pattern Baldness To Prostate Cancer

Newsy (Sep. 16, 2014) New findings suggest men with a certain type of baldness at age 45 are 39 percent more likely to develop aggressive prostate cancer. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins