Featured Research

from universities, journals, and other organizations

LED lamps: Less energy, more light

Date:
March 11, 2014
Source:
Fraunhofer-Gesellschaft
Summary:
LEDs are durable and save energy. Now researchers have found a way to make LED lamps even more compact while supplying more light than commercially available models. The key to success: transistors made of the semiconductor material gallium nitride.

Gallium nitride transistors enable the compact design of this 2090 lumen retrofit LED lamp (exploded diagram for purpose of illustration).
Credit: Fraunhofer IAF

LEDs are durable and save energy. Now researchers have found a way to make LED lamps even more compact while supplying more light than commercially available models. The key to success: transistors made of the semiconductor material gallium nitride.

Related Articles


Incandescent light bulbs are now banned in the EU, while energy-saving lamps remain a bone of contention. In 2016, it will be lights out for halogen bulbs over 10 watts as well. LEDs (light-emitting diodes) therefore have the best chance of becoming the light source of the future. Experts reckon that LED retrofit lamps for use in standard bulb fittings will overtake traditional energy-saving bulbs for the first time from 2015. By 2020 it is predicted that LEDs will have captured between 88 and 90 percent of the lighting market. The tiny diodes offer a whole host of advantages as the most environmentally friendly source of light -- they contain no harmful substances, consume less energy and, with a lifetime of between 15,000 and 30,000 hours, last longer than conventional light sources. They also work at full brightness as soon as you flick the switch.

Coping with higher temperatures

LEDs do have one weakness, though -- they are extremely sensitive to variations and spikes in power. To function properly, they need a driver that ensures a constant supply of power at all times. This driver, which takes the alternating current from the grid and converts it into direct current with a reduced voltage, has a profound influence on the light yield and lifetime of the LED lamp as a whole. The demands placed on the driver electronics are correspondingly high. This has prompted researchers at the Fraunhofer Institute for Applied Solid State Physics IAF in Freiburg to focus their attention on voltage transformers featuring gallium nitride (GaN) transistors. During practical testing, the scientists found that the drivers developed using this new semiconductor material were extremely robust. Components made of GaN can operate at higher currents, voltages and temperatures than standard silicon transistors. "Heat plays a role both in the brightness and the service life of LED lamps," says Dr. Michael Kunzer, group manager at Fraunhofer IAF.

Gallium nitride transistors switch at high speed

Gallium nitride transistors can also switch at high frequencies. The switching speed has a significant impact on the size of the coils and condensers built into the drivers for energy storage. In a GaN-based driver, the switch speed can be made as much as a factor of 10 faster than that of its silicon equivalent. "Applied to a smaller surface, this means it is possible to make switching cheaper. The whole LED lamp can be made lighter and more compact while delivering the same or even improved illumination," explains Kunzer. Since the energy storage component plays a decisive role in manufacturing costs, this could have an extremely positive effect on the end price.

Thanks to the new semiconductor material's useful properties, Kunzer and his team have been able to boost the efficiency of the GaN driver to 86 percent -- between one and four percentage points better than its silicon equivalent. When compared with the silicon transistor LED lamps available on the market., the scientists were able to increase the light output: while the luminous flux of commercial LED retrofit lamps featuring silicon components is around 1000 lumen (the unit used to measure the light produced), researchers from the IAF have been successful in increasing this to 2090 lumen. "20 percent of energy consumption worldwide can be attributed to lighting, so it's an area where savings are particularly worthwhile.

One shouldn't underestimate the role played by the efficiency of LED drivers, as this is key to saving energy. In principle, the higher the light yield and efficiency, the lower energy consumption is. If you think that by 2020 LEDs will have carved out a market share of almost 90 percent, then it is obvious that they play a significant role in protecting our environment," says Kunzer. The researchers will be showcasing a demonstrator of their retrofit LED from April 7-11 at the Hannover Messe.


Story Source:

The above story is based on materials provided by Fraunhofer-Gesellschaft. Note: Materials may be edited for content and length.


Cite This Page:

Fraunhofer-Gesellschaft. "LED lamps: Less energy, more light." ScienceDaily. ScienceDaily, 11 March 2014. <www.sciencedaily.com/releases/2014/03/140311100610.htm>.
Fraunhofer-Gesellschaft. (2014, March 11). LED lamps: Less energy, more light. ScienceDaily. Retrieved October 30, 2014 from www.sciencedaily.com/releases/2014/03/140311100610.htm
Fraunhofer-Gesellschaft. "LED lamps: Less energy, more light." ScienceDaily. www.sciencedaily.com/releases/2014/03/140311100610.htm (accessed October 30, 2014).

Share This



More Matter & Energy News

Thursday, October 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Reuters - Innovations Video Online (Oct. 29, 2014) A Swedish amputee who became the first person to ever receive a brain controlled prosthetic arm is able to manipulate and handle delicate objects with an unprecedented level of dexterity. The device is connected directly to his bone, nerves and muscles, giving him the ability to control it with his thoughts. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Robots Get Funky on the Dance Floor

Robots Get Funky on the Dance Floor

AP (Oct. 29, 2014) Dancing, spinning and fighting robots are showing off their agility at "Robocomp" in Krakow. (Oct. 29) Video provided by AP
Powered by NewsLook.com
Saharan Solar Project to Power Europe

Saharan Solar Project to Power Europe

Reuters - Business Video Online (Oct. 29, 2014) A solar energy project in the Tunisian Sahara aims to generate enough clean energy by 2018 to power two million European homes. Matt Stock reports. Video provided by Reuters
Powered by NewsLook.com
Lowe's Testing Robot Sales Assistants in California Store

Lowe's Testing Robot Sales Assistants in California Store

Buzz60 (Oct. 29, 2014) Lowe’s is testing out what it’s describing as a robotic shopping assistant in one of its Orchard Supply Hardware Stores in California. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins