Featured Research

from universities, journals, and other organizations

Potential heart attack drug without side effects under development

Date:
March 11, 2014
Source:
Monash University
Summary:
A team of scientists combining molecular pharmacology and medicinal chemistry reveal new insights into a specific protein belonging to the family of G protein-coupled receptors (GPCRs). After successfully combining two molecules, they are a step closer to creating a brand new class of drug that is more targeted and could possess minimal side effects.

Melbourne scientists are a step closer to creating a new drug to stop a heart attack in its tracks and reduce the damage caused, without any side effects.

Related Articles


The Monash University research, published today in the journal, Proceedings of the National Academy of Sciences, USA (PNAS), offers new hope to thousands of people who experience heart attacks and heart failure -- one of the major causes of death worldwide.

Professors Arthur Christopoulos and Peter Scammells from the Monash Institute of Pharmaceutical Sciences (MIPS) led a team of scientists combining molecular pharmacology and medicinal chemistry to reveal new insights into a specific protein belonging to the family of G protein-coupled receptors (GPCRs). After successfully combining two molecules, they are a step closer to creating a brand new class of drug that is more targeted and could possess minimal side effects.

GPCRs play a role in virtually every biological process and most diseases, including, cardiovascular disease, obesity and diabetes, neuropsychiatric disorder, inflammation and cancer. Almost half of all current medications available use GPCRs to achieve their therapeutic effect.

Current GPCR drugs work either by fully activating or completely blocking receptors, treating the protein like a simple "on-off" switch. This new research discovered alternative recognition sites on GPCRs that can be targeted by drugs to fine-tune the behavior of the protein, basically converting the "on-off" switch into a "dimmer switch."

Professor Christopoulos said it was this insight that enabled the new breakthrough.

"When a heart attack strikes, heart cells die because of a lack of oxygen and nutrients. But even more damage is caused when the blood rushes back to the heart cells due to the release of inflammatory chemicals and damaging free radicals," Professor Christopoulos said.

Currently, drugs to minimize damage to the heart activate the adenosine A1 receptor, a GPCR found in the heart. However, a major issue in activating the A1 receptor also slows down the heart, and too much activation can stop the heart.

"Correct dosage has been a serious challenge in clinical trials for A1 receptor drugs. The consequences are serious; a dosage that is too high can stop the heart from beating. Too low, and the drug fails to prevent cell damage. Getting this balance right has been a big problem," Professor Scammells said.

Professor Christopoulos said the Monash study focused on finding new ways to activate the protein, to achieve the beneficial effects (protection) without the side effects (slowing the heart).

"We turned to our knowledge of alternative recognition sites on the A1 receptor and specifically designed a new class of molecule that contained two active components linked together, one binding to the main site on the receptor for activation, and another binding to the alternative site for fine-tuning of the activity. Our "dimmer switch" strategy worked, resulting in a molecule that protected heart cells but did not affect heart rate at all -- at least in our animal models," Professor Christopoulos said.

"The beauty of this protein is that if you activate it effectively, you minimise the heart attack and protect the heart cells, and that's something that's never been done before."

The findings will inform the next phase of the research to develop a new drug that could potentially be made available for use by clinicians and emergency paramedics.


Story Source:

The above story is based on materials provided by Monash University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Celine Valant, Lauren T. May, Luigi Aurelio, Chung Hui Chuo, Paul J. White, Jo-Anne Baltos, Patrick M. Sexton, Peter J. Scammells, and Arthur Christopoulos. Separation of on-target efficacy from adverse effects through rational design of a bitopic adenosine receptor agonist. PNAS, March 2014 DOI: 10.1073/pnas.1320962111

Cite This Page:

Monash University. "Potential heart attack drug without side effects under development." ScienceDaily. ScienceDaily, 11 March 2014. <www.sciencedaily.com/releases/2014/03/140311104919.htm>.
Monash University. (2014, March 11). Potential heart attack drug without side effects under development. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2014/03/140311104919.htm
Monash University. "Potential heart attack drug without side effects under development." ScienceDaily. www.sciencedaily.com/releases/2014/03/140311104919.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com
Experimental Ebola Vaccine Shows Promise In Human Trial

Experimental Ebola Vaccine Shows Promise In Human Trial

Newsy (Nov. 27, 2014) — A recent test of a prototype Ebola vaccine generated an immune response to the disease in subjects. Video provided by Newsy
Powered by NewsLook.com
Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) — Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) — Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins