Featured Research

from universities, journals, and other organizations

Cellular alchemy: How to make insulin-producing cells from gut cells

Date:
March 11, 2014
Source:
Perelman School of Medicine at the University of Pennsylvania
Summary:
Introducing three proteins that control the regulation of DNA in the nucleus -- called transcription factors -- into an immune-deficient mouse turned a specific group of cells in the gut lining into beta-like cells. “Our results demonstrate that the intestine could be an accessible and abundant source of functional insulin-producing cells,” says the lead author of the study. “Our ultimate goal is to obtain epithelial cells from diabetes patients who have had endoscopies, expand these cells, add PMN to them to make beta-like cells, and then give them back to the patient as an alternate therapy."

Insulin-expressing cells (red) arising within the intestinal crypts (green) of a mouse that received three beta-cell "reprogramming factors."
Credit: Ben Stanger, MD, PhD, Perelman School of Medicine

Destruction of insulin-producing beta cells in the pancreas is at the heart of type 1 and type 2 diabetes. “We are looking for ways to make new beta cells for these patients to one day replace daily insulin injections,” says Ben Stanger, MD, PhD, assistant professor of Medicine in the Division of Gastroenterology, Perelman School of Medicine at the University of Pennsylvania. Transplanting islet cells to restore normal blood sugar levels in patients with severe type 1 diabetes is one approach to treating the disease, and using stem cells to create beta cells is another area of investigation.

However, both of these strategies have limitations: transplantable islet cells are in short supply, and stem cell-based approaches have a long way to go before they reach the clinic.

“It’s a powerful idea that if you have the right combination of transcription factors you can make any cell into any other cell. It’s cellular alchemy,” comments Stanger.

New research from Stanger and postdoctoral fellow Yi-Ju Chen, PhD, reported in Cell Reports this month, describes how introducing three proteins that control the regulation of DNA in the nucleus -- called transcription factors -- into an immune-deficient mouse turned a specific group of cells in the gut lining into beta-like cells, raising the prospect of using differentiated pancreatic cells as a source for new beta cells.

In 2008, the lab of Stanger's postdoctoral mentor introduced the three beta-cell reprogramming factors -- Pdx1 (P), MafA (M), and Ngn3 (N) -- collectively called PMN – into the acinar cells of the pancreas. Remarkably, this manipulation caused the cells to take on some structural and physiological features of beta cells.

Following this report, the Stanger team set out to determine which, if any, other cell types could be reprogrammed into beta cells. “We expressed PMN in a wide spectrum of tissues in one-to-two-month-old mice,” says Stanger. “Three days later the mice died of hypoglycemia.” The team knew they were on to something given that some of the mouse cells – cells other than acinar cells -- were making way too much extra insulin, in fact a lethal amount.

In tracking down which cell type it was, “we saw transient expression of the three factors in crypt cells of the intestine near the pancreas,” explain Stanger.

They dubbed these beta-like, transformed cells “neoislet” cells. These cells express insulin and show outward structural features akin to beta cells. The neoislets are also responsive to glucose – when exposed to glucose they release insulin. The cells were also able to improve hyperglycemia in diabetic mice.

The team also figured out how to turn the factors on in only the intestinal crypt cells so the deadly whole-body hypoglycemia side effect that first killed the mice was repaired.

What’s more, expressing PMN in human intestinal ‘‘organoids’’ – miniature intestinal units that can be grown in culture – also converted intestinal epithelial cells into beta-like cells.

“Our results demonstrate that the intestine could be an accessible and abundant source of functional insulin-producing cells,” says Stanger. “Our ultimate goal is to obtain epithelial cells from diabetes patients who have had endoscopies, expand these cells, add PMN to them to make beta-like cells, and then give them back to the patient as an alternate therapy. There is a long way to go for this to be possible, including improving the functional properties of the cells, so that they more closely resemble beta cells, and figuring out alternate ways of converting intestinal cells to beta-like cells without gene therapy.\


Story Source:

The above story is based on materials provided by Perelman School of Medicine at the University of Pennsylvania. Note: Materials may be edited for content and length.


Journal Reference:

  1. Yi-Ju Chen, StacyR. Finkbeiner, Daniel Weinblatt, MatthewJ. Emmett, Feven Tameire, Maryam Yousefi, Chenghua Yang, Rene Maehr, Qiao Zhou, Ruth Shemer, Yuval Dor, Changhong Li, JasonR. Spence, BenZ. Stanger. De Novo Formation of Insulin-Producing “Neo-β Cell Islets” from Intestinal Crypts. Cell Reports, 2014; DOI: 10.1016/j.celrep.2014.02.013

Cite This Page:

Perelman School of Medicine at the University of Pennsylvania. "Cellular alchemy: How to make insulin-producing cells from gut cells." ScienceDaily. ScienceDaily, 11 March 2014. <www.sciencedaily.com/releases/2014/03/140311141503.htm>.
Perelman School of Medicine at the University of Pennsylvania. (2014, March 11). Cellular alchemy: How to make insulin-producing cells from gut cells. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2014/03/140311141503.htm
Perelman School of Medicine at the University of Pennsylvania. "Cellular alchemy: How to make insulin-producing cells from gut cells." ScienceDaily. www.sciencedaily.com/releases/2014/03/140311141503.htm (accessed October 21, 2014).

Share This



More Health & Medicine News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How Nigeria Beat Its Ebola Outbreak

How Nigeria Beat Its Ebola Outbreak

Newsy (Oct. 20, 2014) The World Health Organization has declared Nigeria free of Ebola. Health experts credit a bit of luck and the government's initial response. Video provided by Newsy
Powered by NewsLook.com
Another Study Suggests Viagra Is Good For The Heart

Another Study Suggests Viagra Is Good For The Heart

Newsy (Oct. 20, 2014) An ingredient in erectile-dysfunction medications such as Viagra could improve heart function. Perhaps not surprising, given Viagra's history. Video provided by Newsy
Powered by NewsLook.com
Ebola Worries End for Dozens on U.S. Watch Lists

Ebola Worries End for Dozens on U.S. Watch Lists

Reuters - US Online Video (Oct. 20, 2014) Forty-three people who had contact with Thomas Eric Duncan, the first person diagnosed with Ebola in the U.S., were cleared overnight of twice-daily monitoring after 21 days of showing no symptoms. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
CDC Calls for New Ebola Safety Guidelines

CDC Calls for New Ebola Safety Guidelines

AP (Oct. 20, 2014) Centers for Disease Control and Prevention Director Dr. Tom Frieden laid out new guidelines for health care workers when dealing with the deadly Ebola virus including new precautions when taking off personal protective equipment. (Oct. 20) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins