Featured Research

from universities, journals, and other organizations

Heat-based technique offers new way to measure microscopic particles

Date:
March 13, 2014
Source:
North Carolina State University
Summary:
Researchers have developed a new heat-based technique for counting and measuring the size of microscopic particles. The technique is less expensive than light-based techniques and can be used on a wider array of materials than electricity-based techniques.

The researchers built a device in which an extremely narrow plastic tube rests on a silicon substrate. A wire is connected to a single point beneath the tube. An extremely small current is run through the wire, both generating heat that radiates into the tube and measuring the temperature of the tube and its contents.
Credit: Image courtesy of North Carolina State University

Researchers have developed a new heat-based technique for counting and measuring the size of microscopic particles. The technique is less expensive than light-based techniques and can be used on a wider array of materials than electricity-based techniques. The research was performed by faculty at North Carolina State University, the University of North Carolina at Chapel Hill and Marquette University.

"We launched this study purely out of curiosity, but it's developed into a technique that has significant advantages over existing methods for counting and measuring the size of microscopic objects," says Dr. Glenn Walker, senior author of a paper on the work and an associate professor in the joint biomedical engineering program at NC State and UNC-Chapel Hill.

Particle counters are used in a wide variety of industries. For example, physicians use them to count and identify blood and cancer cells while ink manufacturers use them to ensure consistent toner quality. The new thermal technique could also lead to new applications.

The researchers built a device in which an extremely narrow plastic tube rests on a silicon substrate. A wire is connected to a single point beneath the tube. An extremely small current is run through the wire, both generating heat that radiates into the tube and measuring the temperature of the tube and its contents.

When a solution containing microscopic particles is injected into the tube it flows past the wire and the heated area. When the particles pass through this thermal zone they alter the electrical resistance of the wire. This is because the thermal conductivity of a particle will either increase or decrease the temperature in that part of the tube, causing the electrical resistance to go up or down.

Since the researchers know the flow rate of the solution through the tube, they can measure the length of time that the electrical resistance was changed and calculate the size of the objects suspended in the solution.

"So far, we've tested this method effectively with objects in the 200 micron to 90 micron range -- at the larger end of the spectrum commonly measured by commercial particle counters," Walker says. "But in theory we'll be able to get down to the 10 micron range and measure individual cells. We're working on that now."

The researchers are also exploring ways to use the technique to detect unwelcome metal particles resulting from machine wear in mechanical devices.

"There are three advantages to our technique," Walker says. "It's simple, it's inexpensive, and it can monitor any kind of particle. Flow cytometry -- which uses light -- is both expensive and complex, while Coulter counters -- which use electricity -- only work on objects that don't conduct electricity but are suspended in a solution that is conductive."


Story Source:

The above story is based on materials provided by North Carolina State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ashwin Kumar Vutha, Benyamin Davaji, Chung Hoon Lee, Glenn M. Walker. A microfluidic device for thermal particle detection. Microfluidics and Nanofluidics, 2014; DOI: 10.1007/s10404-014-1369-z

Cite This Page:

North Carolina State University. "Heat-based technique offers new way to measure microscopic particles." ScienceDaily. ScienceDaily, 13 March 2014. <www.sciencedaily.com/releases/2014/03/140313092613.htm>.
North Carolina State University. (2014, March 13). Heat-based technique offers new way to measure microscopic particles. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2014/03/140313092613.htm
North Carolina State University. "Heat-based technique offers new way to measure microscopic particles." ScienceDaily. www.sciencedaily.com/releases/2014/03/140313092613.htm (accessed July 22, 2014).

Share This




More Matter & Energy News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Government Approves East Coast Oil Exploration

Government Approves East Coast Oil Exploration

AP (July 18, 2014) The Obama administration approved the use of sonic cannons to discover deposits under the ocean floor by shooting sound waves 100 times louder than a jet engine through waters shared by endangered whales and turtles. (July 18) Video provided by AP
Powered by NewsLook.com
Sunken German U-Boat Clearly Visible For First Time

Sunken German U-Boat Clearly Visible For First Time

Newsy (July 18, 2014) The wreckage of the German submarine U-166 has become clearly visible for the first time since it was discovered in 2001. Video provided by Newsy
Powered by NewsLook.com
Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Reuters - US Online Video (July 17, 2014) President Barak Obama stopped by at a lunch counter in Delaware before making remarks about boosting the nation's infrastructure. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

TheStreet (July 16, 2014) Oil Futures are bouncing back after tumbling below $100 a barrel for the first time since May yesterday. Jeff Grossman is the president of BRG Brokerage and trades at the NYMEX. Grossman tells TheStreet the Middle East is always a concern for oil traders. Oil prices were pushed down in recent weeks on Libya increasing its production. Supply disruptions in Iraq fading also contributed to prices falling. News from China's economic front showing a growth for the second quarter also calmed fears on its slowdown. Jeff Grossman talks to TheStreet's Susannah Lee on this and more on the Energy Department's Energy Information Administration (EIA) report. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins