Featured Research

from universities, journals, and other organizations

Oxygen's different shapes described

Date:
March 13, 2014
Source:
North Carolina State University
Summary:
Oxygen-16, one of the key elements of life on Earth, is produced by a series of reactions inside of red giant stars. Now physicists have revealed how the element's nuclear shape changes depending on its state, even though other attributes such as spin and parity don't appear to differ. Their findings may shed light on how oxygen is produced.

This image shows the nuclear shape of the ground and first excited state of oxygen-16.
Credit: Dean Lee, NC State University

Oxygen-16, one of the key elements of life on earth, is produced by a series of reactions inside of red giant stars. Now a team of physicists, including one from North Carolina State University, has revealed how the element's nuclear shape changes depending on its state, even though other attributes such as spin and parity don't appear to differ. Their findings may shed light on how oxygen is produced.

Carbon and oxygen are formed when helium burns inside of red giant stars. Carbon-12 forms when three helium-4 nuclei combine in a very specific way (called the triple alpha process), and oxygen-16 is the combination of a carbon-12 and another helium-4 nucleus.

Although physicists knew what oxygen-16 was made of, they were still puzzled by the fact that both the ground and first excited states of the element had zero spin and positive parity. A similar situation occurs in carbon-12 with the ground state and second zero-spin state known as the Hoyle state. At room temperature, only the ground state of oxygen-16 is seen due to the very cold temperature compared to nuclear energies. But the excited states of oxygen-16 become important for the helium-burning reactions inside stars.

"It's expected that oxygen-16 would have zero spin and positive parity as its ground state," says NC State physicist Dean Lee, team member and co-author of a paper describing the research. "What is unexpected is that the first excited state also has these qualities. It made us wonder what the real difference is between the states, which required looking at the structure of the eight protons and eight neutrons in oxygen-16. We had addressed a similar puzzle for the ground state and Hoyle state of carbon-12."

Lee, with colleagues Evgeny Epelbaum, Hermann Krebs, Timo Laehde, and Ulf-G. Meissner, had previously developed a new method for describing all the possible ways that protons and neutrons can bind with one another inside nuclei such as carbon-12 and the Hoyle state. They used an approach called "effective field theory" formulated on a complex numerical lattice that allows the researchers to run simulations that show how particles interact, and so reveal the structure of the nuclei.

In this work, the same team plus Mississippi State physicist Gautam Rupak, found their lattice revealed that although both the ground and first excited states of oxygen-16 "look" the same in terms of spin and parity, they are in fact quite different structurally. In the ground state, the protons and neutrons are arranged in a tetrahedral configuration of four alpha clusters containing two protons and two neutrons each. For the first excited state, the alpha clusters are arranged in a square.

"The production of oxygen-16 from carbon-12 is still very poorly understood from both theoretical and experimental studies," Lee says. "These lattice simulations give us our first look at the structure of low-energy states of oxygen-16."

The results appear online March 12 in Physical Review Letters. The work was funded by the U.S. Department of Energy; the National Science Foundation; the Deutsche Forschungsgemeinschaft, Helmholtz-Gemeinschaft Deutscher Forschungszentren and Bundesministerium fuer Bildung und Forschung in Germany; European Union HadronPhysics3 Project and the European Research Council.


Story Source:

The above story is based on materials provided by North Carolina State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Evgeny Epelbaum, Hermann Krebs, Timo A. Lδhde, Dean Lee, Ulf-G. Meiίner, Gautam Rupak. Ab initio calculation of the spectrum and structure of 16O. Physical Review Letters, 2014 (in press) [link]

Cite This Page:

North Carolina State University. "Oxygen's different shapes described." ScienceDaily. ScienceDaily, 13 March 2014. <www.sciencedaily.com/releases/2014/03/140313111910.htm>.
North Carolina State University. (2014, March 13). Oxygen's different shapes described. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2014/03/140313111910.htm
North Carolina State University. "Oxygen's different shapes described." ScienceDaily. www.sciencedaily.com/releases/2014/03/140313111910.htm (accessed July 25, 2014).

Share This




More Matter & Energy News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) — TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) — Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) — When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) — 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:  

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile iPhone Android Web
          Follow Facebook Twitter Google+
          Subscribe RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins