Featured Research

from universities, journals, and other organizations

Brain degeneration in Huntington's disease caused by amino acid deficiency

Date:
March 26, 2014
Source:
Johns Hopkins Medicine
Summary:
Working with genetically engineered mice, neuroscientists report they have identified what they believe is the cause of the vast disintegration of a part of the brain called the corpus striatum in rodents and people with Huntington’s disease: loss of the ability to make the amino acid cysteine. They also found that disease progression slowed in mice that were fed a diet rich in cysteine, which is found in foods such as wheat germ and whey protein.

Working with genetically engineered mice, Johns Hopkins neuroscientists report they have identified what they believe is the cause of the vast disintegration of a part of the brain called the corpus striatum in rodents and people with Huntington's disease: loss of the ability to make the amino acid cysteine. They also found that disease progression slowed in mice that were fed a diet rich in cysteine, which is found in foods such as wheat germ and whey protein.

Their results suggest further investigation into cysteine supplementation as a candidate therapeutic in people with the disease.

Up to 90 percent of the human corpus striatum, a brain structure that moderates mood, movement and cognition, degenerates in people with Huntington's disease, a condition marked by widespread motor and intellectual disability. And while the genetic mutation underlying Huntington's disease has long been known, the precise cause of that degeneration has remained a mystery.

In a report on their discovery in the advanced online publication of Nature on March 26, the Johns Hopkins researchers, led by Solomon Snyder, M.D., tracked the degenerative process to the absence of an enzyme, cystathionine gamma lyase, or CSE.

"Usually it's very hard, if not impossible, to develop straightforward mechanisms that explain what's going on in a disease. What's even harder is even if you can find a mechanism that causes a tissue to rot, usually there's nothing you can do about it," says Snyder, a professor of neuroscience at the Johns Hopkins University School of Medicine. "In this case, there is."

Huntington's disease, an inherited disorder, does its damage because of abnormal DNA coding for the amino acid glutamine. Healthy individuals have some 15 to 20 DNA "repeats" in that part of their genetic code, while Huntington's disease gene carriers have more than 36 -- and often upward of 100. Children born to a parent carrier have a 50/50 chance of inheriting the disorder, and the greater the number of repeats, the earlier the age of onset of the incurable disorder.

Bindu Diana Paul, Ph.D., a molecular neuroscientist and faculty instructor in Snyder's laboratory, was studying mice lacking CSE, which helps make the amino acid cysteine and hydrogen sulfide that moderate blood pressure and heart function. Paul, who had previous research experience with Huntington's disease, says she was startled to observe that her mutant mice also behaved a lot like those with the disease.

When a normal mouse is dangled upside down from its tail, it will twist and turn and try to bite the offending hand, she explains. But her CSE-knockout mice stayed relatively still and clasped their paws together -- the same behavior she'd observed in mice with the rodent equivalent of Huntington's disease. "It looked like there was a neurological deficit," Paul says. "But nobody had looked at CSE in the brain."

Paul and Snyder began monitoring CSE in mouse and human brain tissues and found considerably less CSE in all diseased tissues. All people carry some normal huntingtin protein made by the Huntington's disease gene, although the protein's function remains elusive. But people with Huntington's disease also carry mutant huntingtin proteins. Snyder and his team saw that the mutant proteins were attaching themselves to a crucial protein responsible for turning the CSE gene on or off, which ultimately led the diseased rodent and human brain tissues to be deprived of cysteine.

To see if loss of cysteine was directly responsible for the symptoms associated with Huntington's disease, the Johns Hopkins team turned to readily available sources of the substance in everyday foods and fed mice a cysteine-rich diet.

The results, Paul says, were striking. When those mice were dangled from their tails, they resumed struggling, although with a bit less vigor than their healthy peers. They were able to grip an object with greater strength, and they took longer to fall off a balancing apparatus than CSE-knockout mice. Their life expectancies increased one to two weeks.

Snyder and Paul say they are cautiously optimistic about the results, noting that although they suggest a possible treatment for Huntington's disease, it's clear that a high cysteine diet merely slows rather than halts the progression of the disease. Moreover, the results in live mice may not occur in humans.


Story Source:

The above story is based on materials provided by Johns Hopkins Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Bindu D. Paul, Juan I. Sbodio, Risheng Xu, M. Scott Vandiver, Jiyoung Y. Cha, Adele M. Snowman & Solomon H. Snyder. Cystathionine γ-lyase deficiency mediates neurodegeneration in Huntington’s disease. Nature, March 2014 DOI: 10.1038/nature13136

Cite This Page:

Johns Hopkins Medicine. "Brain degeneration in Huntington's disease caused by amino acid deficiency." ScienceDaily. ScienceDaily, 26 March 2014. <www.sciencedaily.com/releases/2014/03/140326141646.htm>.
Johns Hopkins Medicine. (2014, March 26). Brain degeneration in Huntington's disease caused by amino acid deficiency. ScienceDaily. Retrieved August 30, 2014 from www.sciencedaily.com/releases/2014/03/140326141646.htm
Johns Hopkins Medicine. "Brain degeneration in Huntington's disease caused by amino acid deficiency." ScienceDaily. www.sciencedaily.com/releases/2014/03/140326141646.htm (accessed August 30, 2014).

Share This




More Mind & Brain News

Saturday, August 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Young Entrepreneurs Get $100,000, If They Quit School

Young Entrepreneurs Get $100,000, If They Quit School

AFP (Aug. 29, 2014) Twenty college-age students are getting 100,000 dollars from a Silicon Valley leader and a chance to live in San Francisco in order to work on the start-up project of their dreams, but they have to quit school first. Duration: 02:20 Video provided by AFP
Powered by NewsLook.com
Baby Babbling Might Lead To Faster Language Development

Baby Babbling Might Lead To Faster Language Development

Newsy (Aug. 29, 2014) A new study suggests babies develop language skills more quickly if their parents imitate the babies' sounds and expressions and talk to them often. Video provided by Newsy
Powered by NewsLook.com
Electrical Stimulation Boosts Brain Function, Study Says

Electrical Stimulation Boosts Brain Function, Study Says

Newsy (Aug. 29, 2014) Researchers found an improvement in memory and learning function in subjects who received electric pulses to their brains. Video provided by Newsy
Powered by NewsLook.com
Treadmill 'trips' May Reduce Falls for Elderly

Treadmill 'trips' May Reduce Falls for Elderly

AP (Aug. 28, 2014) Scientists are tripping the elderly on purpose in a Chicago lab in an effort to better prevent seniors from falling and injuring themselves in real life. (Aug.28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins