Featured Research

from universities, journals, and other organizations

Biological testing tool, ScanDrop, tests in fraction of time and cost of industry standard

Date:
March 26, 2014
Source:
Northeastern University
Summary:
A single instrument that can conduct a wide range of biological scans in a fraction of the time and cost of industry standard equipment has been developed. It uses considerably less material and ultra-sensitive detection methods to do the same thing. ScanDrop, is a portable instrument no bigger than a shoebox that has the capacity to detect a variety of biological specimen. For that reason it will benefit a wide range of users beyond the medical community, including environmental monitoring and basic scientific research.

Assistant professor of pharmaceutical science Tania Konry is developing new testing platforms to make her revolutionary ScanDrop system relevant for a host of diagnostic and research applications.
Credit: Brooks Canaday

Northeastern University professor of pharmaceutical sciences, Tania Konry, has developed a single instrument that can conduct a wide range of biological scans in a fraction of the time and cost of industry standard equipment. That's because it uses considerably less material and ultra-sensitive detection methods to do the same thing.

Related Articles


Currently, researchers face enormous time constraints and financial hurdles from having to run these analyses on a regular basis. Hundreds of dollars and 24 hours are what's required to scan biological materials for important biomarkers that signal diseases such as diabetes or cancer. And suppose you wanted to monitor live cancer cells. For that you'd have to use an entirely different method. It takes just as long but requires a whole other set of expensive top-end instrumentation. Want to look at bacteria instead? Be prepared to wait a few days for it to grow before you can get a meaningful result.

Konry's creation, ScanDrop, is a portable instrument no bigger than a shoebox that has the capacity to detect a variety of biological specimen. For that reason it will benefit a wide range of users beyond the medical community, including environmental monitoring and basic scientific research.

The instrument acts as a miniature science lab, of sorts. It contains a tiny chip, made of polymer or glass, that is connected to equally tiny tubes. An extremely small-volume liquid sample-whether it's water or a biological fluid such as serum-flows in one of those tubes, through the lab-on-a-chip device, and out the other side. While inside, the sample is exposed to a slug of microscopic beads functionalized to react with the lab test's search parameters. For example, one type of bead could be covered with antibodies that selectively bind to e. coli to test water quality. Other types could detect cancer biomarkers or bind to the tetanus virus to test for immunity.

"It can be any biological agent," Konry said. "We take the same approach."

The beads fluoresce when the specific marker or cell in question has been detected; from there, an analysis by ScanDrop can provide the concentration levels of that marker or cell.

Because the volumes being tested with ScanDrop are so small, the testing time dwindles to just minutes. This means you could get near-real time measures of a changing sample-be it bacteria levels in a flowing body of water or dynamic insulin levels in the bloodstream of a person with diabetes.

Konry noted that not only are other testing mechanisms prohibitively expensive, but they are also fairly useless in the field-particularly in remote areas-because the instruments are large and require long times for analysis. By comparison, ScanDrop's portability makes it much more functional and efficient in the field.

Her team recently joined forces with a group at the University of California at Berkeley, which developed software that can remotely control ScanDrop's activity from anywhere on the planet. This functionality could be particularly useful when the instrument is set up in the field to continuously monitor the environment. The achievement, Konry said, adds yet another level of efficiency to the system. The research was recently reported in the journal PLOS ONE.


Story Source:

The above story is based on materials provided by Northeastern University. The original article was written by Angela Herring. Note: Materials may be edited for content and length.


Journal Reference:

  1. Alexander Golberg, Gregory Linshiz, Ilia Kravets, Nina Stawski, Nathan J. Hillson, Martin L. Yarmush, Robert S. Marks, Tania Konry. Cloud-Enabled Microscopy and Droplet Microfluidic Platform for Specific Detection of Escherichia coli in Water. PLoS ONE, 2014; 9 (1): e86341 DOI: 10.1371/journal.pone.0086341

Cite This Page:

Northeastern University. "Biological testing tool, ScanDrop, tests in fraction of time and cost of industry standard." ScienceDaily. ScienceDaily, 26 March 2014. <www.sciencedaily.com/releases/2014/03/140326142305.htm>.
Northeastern University. (2014, March 26). Biological testing tool, ScanDrop, tests in fraction of time and cost of industry standard. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2014/03/140326142305.htm
Northeastern University. "Biological testing tool, ScanDrop, tests in fraction of time and cost of industry standard." ScienceDaily. www.sciencedaily.com/releases/2014/03/140326142305.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
3D Printed Cookies Just in Time for Christmas

3D Printed Cookies Just in Time for Christmas

Reuters - Innovations Video Online (Dec. 18, 2014) A tech company in Spain have combined technology with cuisine to develop the 'Foodini', a 3D printer designed to print the perfect cookie for Santa. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
First Etihad Superjumbo Flight in December

First Etihad Superjumbo Flight in December

AFP (Dec. 18, 2014) The first flight of Etihad Airways' long-awaited Airbus A380 superjumbo will take place later in December, the Abu Dhabi carrier said Thursday, also announcing its first Boeing 787 Dreamliner route. Duration: 01:09 Video provided by AFP
Powered by NewsLook.com
Ford Expands Air Bag Recall Nationwide

Ford Expands Air Bag Recall Nationwide

Newsy (Dec. 18, 2014) The automaker added 447,000 vehicles to its recall list, bringing the total to more than 502,000. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins