Featured Research

from universities, journals, and other organizations

Mixing silicon with other materials improves the diversity of nanoscale electronic devices

Date:
March 30, 2014
Source:
The Agency for Science, Technology and Research (A*STAR)
Summary:
The semiconductor silicon lies at the heart of the current revolution in electronics and computing. In particular, it can produce compact integrated circuits when processed by modern techniques capable of fabricating structures just a few nanometers in size.

Cross-sectional view of stable nanowires made from carbon–silicon (left), germanium–silicon (center) and tin–silicon (right), as predicted by calculations. The silicon atoms (yellow) are found at the edge of the nanowire when alloyed with tin (gray) and germanium (green). In contrast, in carbon–silicon nanowires (where carbon is indicated in black), they have an ordered arrangement.
Credit: 2014 A*STAR Institute of High Performance Computing

The semiconductor silicon lies at the heart of the current revolution in electronics and computing. In particular, it can produce compact integrated circuits when processed by modern techniques capable of fabricating structures just a few nanometers in size.

Now, Man-Fai Ng and Teck Leong Tan at the A*STAR Institute of High Performance Computing in Singapore have shown that mixing silicon with similar materials can open the door to the fabrication of nanoscale devices with a diverse array of properties that have a wider range of applications.

Ng and Tan used state-of-the-art computer simulations to assess the structural stability and electronic properties of silicon-based nanowires. As their name suggests, nanowires are just a few nanometers wide but can be up to a millimeter long. They exhibit unusual electronic properties because their small width confines the motion of electrons across the wire.

The properties of silicon nanowires are well established, but there is considerable scope to expand their applicability. Scientists anticipate they could realize a more diverse range of characteristics by partially replacing silicon with other elements that are in the same column as silicon in the periodic table. There are many potential materials -- including carbon, germanium and tin -- each of which can be combined with silicon in any ratio to form an alloy.

Consequently, the total number of possible alloys is immense. The researchers thus undertook a comprehensive search of all these silicon-based alloys to determine which are atomically stable and which have the best properties for nanowire devices.

Ng and Tan employed three mathematical techniques (namely, density functional theory, the cluster expansion method and the Monte Carlo method) to simulate different atomic arrangements in nanowires.

"Instead of evaluating all possible alloy structures, our multiscaled simulation approach enabled rapid large-scale comparison of different combinations of alloy structures and selected the thermodynamically stable ones," explained Ng.

The most stable germanium-silicon and tin-silicon nanowires were found to be those in which the silicon atoms are concentrated around the edge of the wire and the other atomic species are at the core. Conversely, an optimum carbon-silicon nanowire exhibited an ordered arrangement of the atomic species (see image).

Once they had identified the optimum atomic arrangement, Ng and Tan calculated the energy bandgap -- a critical parameter for determining the electronic properties of semiconductors. "Next, we plan to improve the bandgap prediction for silicon-based nanowires and develop our approach to address more complicated nanosystems for energy applications," says Ng.

The A*STAR-affiliated researchers contributing to this research are from the Institute of High Performance Computing


Story Source:

The above story is based on materials provided by The Agency for Science, Technology and Research (A*STAR). Note: Materials may be edited for content and length.


Journal Reference:

  1. Man-Fai Ng, Teck L. Tan. Unveiling Stable Group IV Alloy Nanowires via a Comprehensive Search and Their Electronic Band Characteristics. Nano Letters, 2013; 13 (10): 4951 DOI: 10.1021/nl402987c

Cite This Page:

The Agency for Science, Technology and Research (A*STAR). "Mixing silicon with other materials improves the diversity of nanoscale electronic devices." ScienceDaily. ScienceDaily, 30 March 2014. <www.sciencedaily.com/releases/2014/03/140330193648.htm>.
The Agency for Science, Technology and Research (A*STAR). (2014, March 30). Mixing silicon with other materials improves the diversity of nanoscale electronic devices. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2014/03/140330193648.htm
The Agency for Science, Technology and Research (A*STAR). "Mixing silicon with other materials improves the diversity of nanoscale electronic devices." ScienceDaily. www.sciencedaily.com/releases/2014/03/140330193648.htm (accessed July 29, 2014).

Share This




More Matter & Energy News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Climate Change Could Cost Billions, According To White House

Climate Change Could Cost Billions, According To White House

Newsy (July 29, 2014) A report from the White House warns not curbing greenhouse gas emissions could cost the U.S. billions. Video provided by Newsy
Powered by NewsLook.com
Stranded Whale Watching Boat Returns to Boston

Stranded Whale Watching Boat Returns to Boston

Reuters - US Online Video (July 29, 2014) Passengers stuck overnight on a whale watching boat return safely to Boston. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Baluchistan Mining Eyes an Uncertain Future

Baluchistan Mining Eyes an Uncertain Future

AFP (July 29, 2014) Coal mining is one of the major industries in Baluchistan but a lack of infrastructure and frequent accidents mean that the area has yet to hit its potential. Duration: 01:58 Video provided by AFP
Powered by NewsLook.com
Easier Nuclear Construction Promises Fall Short

Easier Nuclear Construction Promises Fall Short

AP (July 29, 2014) The U.S. nuclear industry started building its first new plants using prefabricated Lego-like blocks meant to save time and prevent the cost overruns that crippled the sector decades ago. So far, it's not working. (July 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins