Featured Research

from universities, journals, and other organizations

Making the most of carbon nanotube-liquid crystal combos

Date:
April 2, 2014
Source:
Springer Science+Business Media
Summary:
Physical response of combination materials made of nanotubes with ferroelectric liquid crystals could lead to new applications. Dispersions of carbon nanotubes with liquid crystals have attracted much interest because they pave the way for creating new materials with added functionalities. Now, a new study focuses on the influence of temperature and nanotube concentration on the physical properties of such combined materials.

Dispersed multi-wall carbon nanotubes on a glass surface.
Credit: Yakemseva et al.

Physical response of combination materials made of nanotubes with ferroelectric liquid crystals could lead to new applications.

Related Articles


Dispersions of carbon nanotubes with liquid crystals have attracted much interest because they pave the way for creating new materials with added functionalities. Now, a study published in EPJ E by Marina Yakemseva and colleagues at the Nanomaterials Research Institute in Ivanovo, Russia, focuses on the influence of temperature and nanotube concentration on the physical properties of such combined materials. These findings could have implications for optimising these combinations for non-display applications, such as sensors or externally stimulated switches, and novel materials that are responsive to electric, magnetic, mechanical or even optical fields.

The added functionalities of these compound materials are achieved by combining the self-organisation of a liquid crystal with the characteristics of nanotubes, which exhibit a major difference in electric and thermal conductivity between their long and short axis. In this study, the authors focused on the electro-optic and dielectric properties of ferroelectric liquid crystal-multiwall carbon nanotube combinations.

Specifically, they studied the influence of temperature on the compound material's main physical properties, such as tilt angle, spontaneous polarisation, response time, viscosity, and the strength and frequency of its dielectric relaxation. They found that all dispersions exhibit the expected temperature dependencies with regard to their physical properties.

They also investigated the dependence of physical characteristics on nanotube concentration, which is still the subject of several contradicting reports. For increasing nanotube concentration, they observed a decrease in tilt angle, but an increase in spontaneous polarisation. This phenomenon explains the enhancement of the so-called bilinear coupling coefficient between tilt angle and spontaneous polarisation. Despite the increase in polarisation, the electro-optic response times slow down, which suggests an increase in rotational viscosity along the tilt cone. This phenomenon also accounts for the observed decrease in dielectric relaxation frequency for increasing nanotube concentration.


Story Source:

The above story is based on materials provided by Springer Science+Business Media. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. Yakemseva, I. Dierking, N. Kapernaum, N. Usoltseva, F. Giesselmann. Dispersions of multi-wall carbon nanotubes in ferroelectric liquid crystals. The European Physical Journal E, 2014; 37 (2) DOI: 10.1140/epje/i2014-14007-4

Cite This Page:

Springer Science+Business Media. "Making the most of carbon nanotube-liquid crystal combos." ScienceDaily. ScienceDaily, 2 April 2014. <www.sciencedaily.com/releases/2014/04/140402095452.htm>.
Springer Science+Business Media. (2014, April 2). Making the most of carbon nanotube-liquid crystal combos. ScienceDaily. Retrieved January 26, 2015 from www.sciencedaily.com/releases/2014/04/140402095452.htm
Springer Science+Business Media. "Making the most of carbon nanotube-liquid crystal combos." ScienceDaily. www.sciencedaily.com/releases/2014/04/140402095452.htm (accessed January 26, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Monday, January 26, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Cablevision Enters Wi-Fi Phone Fray

Cablevision Enters Wi-Fi Phone Fray

Reuters - Business Video Online (Jan. 26, 2015) The entry by Cablevision and Google could intensify the already heated price wars for mobile phone service. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Hector the Robot Mimics a Giant Stick Insect

Hector the Robot Mimics a Giant Stick Insect

Reuters - Innovations Video Online (Jan. 26, 2015) A robot based on a stick insect can navigate difficult terrain autonomously and adapt to its surroundings. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Scientists Model Flying, Walking Drone After Vampire Bats

Scientists Model Flying, Walking Drone After Vampire Bats

Buzz60 (Jan. 26, 2015) Swiss scientists build a new drone that can both fly and walk, modeling it after the movements of common vampire bats. Jen Markham (@jenmarkham) has the story. Video provided by Buzz60
Powered by NewsLook.com
Obama's Wildlife Plan Renews Alaska Drilling Debate

Obama's Wildlife Plan Renews Alaska Drilling Debate

Newsy (Jan. 26, 2015) President Obama&apos;s proposal aims to protect more land in the Arctic National Wildlife Refuge, but so far, all that&apos;s materialized is a war of words. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins