Science News
from research organizations

Quantum cryptography for mobile phones

Date:
April 3, 2014
Source:
University of Bristol
Summary:
An ultra-high security scheme that could one day get quantum cryptography using Quantum Key Distribution into mobile devices has been developed and demonstrated. Secure mobile communications underpin our society and through mobile phones, tablets and laptops we have become online consumers. The security of mobile transactions is obscure to most people but is absolutely essential if we are to stay protected from malicious online attacks, fraud and theft.
Share:
       
FULL STORY

An ultra-high security scheme that could one day get quantum cryptography using Quantum Key Distribution into mobile devices has been developed and demonstrated by researchers from the University of Bristol's Centre for Quantum Photonics (CQP) in collaboration with Nokia.

Secure mobile communications underpin our society and through mobile phones, tablets and laptops we have become online consumers. The security of mobile transactions is obscure to most people but is absolutely essential if we are to stay protected from malicious online attacks, fraud and theft.

Currently available quantum cryptography technology is bulky, expensive and limited to fixed physical locations -- often server rooms in a bank. The team at Bristol has shown how it is possible to reduce these bulky and expensive resources so that a client requires only the integration of an optical chip into a mobile handset.

The scheme relies on the breakthrough protocol developed by CQP research fellow Dr Anthony Laing, and colleagues, which allows the robust exchange of quantum information through an unstable environment. The research is published in the latest issue of Physical Review Letters.

Dr Laing said: "With much attention currently focused on privacy and information security, people are looking to quantum cryptography as a solution since its security is guaranteed by the laws of physics. Our work here shows that quantum cryptography need not be limited to large corporations, but could be made available to members of the general public. The next step is to take our scheme out of the lab and deploy it in a real communications network."

The system uses photons -- single particles of light -- as the information carrier and the scheme relies on the integrated quantum circuits developed at the University of Bristol. These tiny microchips are crucial for the widespread adoption of secure quantum communications technologies and herald a new dawn for secure mobile banking, online commerce, and information exchange and could shortly lead to the production of the first 'NSA proof' mobile phone.


Story Source:

The above story is based on materials provided by University of Bristol. Note: Materials may be edited for content and length.


Journal Reference:

  1. P. Zhang, K. Aungskunsiri, E. Martín-López, J. Wabnig, M. Lobino, R. W. Nock, J. Munns, D. Bonneau, P. Jiang, H. W. Li, A. Laing, J. G. Rarity, A. O. Niskanen, M. G. Thompson, J. L. O’Brien. Reference-Frame-Independent Quantum-Key-Distribution Server with a Telecom Tether for an On-Chip Client. Physical Review Letters, 2014; 112 (13) DOI: 10.1103/PhysRevLett.112.130501

Cite This Page:

University of Bristol. "Quantum cryptography for mobile phones." ScienceDaily. ScienceDaily, 3 April 2014. <www.sciencedaily.com/releases/2014/04/140403132331.htm>.
University of Bristol. (2014, April 3). Quantum cryptography for mobile phones. ScienceDaily. Retrieved May 28, 2015 from www.sciencedaily.com/releases/2014/04/140403132331.htm
University of Bristol. "Quantum cryptography for mobile phones." ScienceDaily. www.sciencedaily.com/releases/2014/04/140403132331.htm (accessed May 28, 2015).

Share This Page: