Featured Research

from universities, journals, and other organizations

'RoboClam' hits new depths as robotic digger

Date:
April 8, 2014
Source:
Institute of Physics
Summary:
A digging robot inspired by the unique mechanisms employed by the Atlantic razor clam has been created by a group of researchers in the US. The robot, dubbed RoboClam, is able to dig with extreme efficiency by transforming the surrounding soil from a solid into a liquid, and could have a variety of applications from anchoring underwater robots to subsea cable installation and mine neutralization.

The RoboClam is a robot that digs using similar motions as a razor clam. We are testing to RoboClam to investigate the limits of razor clam-inspired burrowing.
Credit: Image courtesy of Institute of Physics

A digging robot inspired by the unique mechanisms employed by the Atlantic razor clam has been created by a group of researchers in the US.

The robot, dubbed RoboClam, is able to dig with extreme efficiency by transforming the surrounding soil from a solid into a liquid, and could have a variety of applications from anchoring underwater robots to subsea cable installation and mine neutralization.

The first results of its performance have been published today, 9 April, in IOP Publishing's journal Bioinspiration & Biomimetics.

The Atlantic razor clam, Ensis directus, is a large species of mollusc found on the North American coast which has a remarkable ability to burrow quickly and deeply into wet sand, easily out-performing any human digger.

According to the researchers, from the Massachusetts Institute of Technology, the Atlantic razor clam should only be able to submerge itself into the soil by about 2 cm with the 10 N of force that it is able to exert. Instead, the razor clam is able to dig 70 cm into the soil.

The efficiency is achieved by the opening and closing of the clam's valves, or shells, which agitate the surrounding soil and turn it into a fluid, therefore creating less resistance and making it easier for the clam to move downwards through the soil.

The researchers have recreated the opening and closing valve mechanism of the razor clam by creating a control platform in the robot which consists of two pneumatic pistons that move a 9 cm-long effector mimicking the razor clam's valves.

The RoboClam is controlled using a "genetic algorithm," which continuously records, and then configures, a number of different variables as the robot is working. The idea is that desirable traits -- in this case digging behaviours -- continue to get expressed through each generation of configuration, forcing the RoboClam to evolve, just as an organism does, into an optimized digging machine.

In their study, the researchers performed over 300 tests of the RoboClam in the razor clam's natural environment in ocean mudflats off the coast of Gloucester, MA.

The results showed that the RoboClam could achieve the same fluidization of soil as the Atlantic razor clam and was able to dig into the soil nearly as efficiently.

Lead author of the research, Professor Amos Winter, of the Department of Mechanical Engineering, said: "We have demonstrated that the robot is able to burrow into the soil with the same energy and depth relationship as the animal. Moving through static soil requires burrowing energy that scales with the square of depth. By fluidizing soil and reducing drag, razor clams and the RoboClam can burrow with energy that scales linearly with depth."

"There are many applications where a small, lightweight, low-power, reversible anchor would be very valuable. At the moment we are working with an underwater robotics company, Bluefin Robotics, who produce vehicles that need to remain stationary in a current, and could therefore benefit from a small anchor."

A video of RoboClam in action can be viewed here http://www.youtube.com/watch?v=bztw9PUiRss.


Story Source:

The above story is based on materials provided by Institute of Physics. Note: Materials may be edited for content and length.


Journal Reference:

  1. A G Winter, V, R L H Deits, D S Dorsch, A H Slocum, A E Hosoi. Razor clam to RoboClam: burrowing drag reduction mechanisms and their robotic adaptation. Bioinspiration & Biomimetics, 2014; 9 (3): 036009 DOI: 10.1088/1748-3182/9/3/036009

Cite This Page:

Institute of Physics. "'RoboClam' hits new depths as robotic digger." ScienceDaily. ScienceDaily, 8 April 2014. <www.sciencedaily.com/releases/2014/04/140408213547.htm>.
Institute of Physics. (2014, April 8). 'RoboClam' hits new depths as robotic digger. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2014/04/140408213547.htm
Institute of Physics. "'RoboClam' hits new depths as robotic digger." ScienceDaily. www.sciencedaily.com/releases/2014/04/140408213547.htm (accessed September 17, 2014).

Share This



More Plants & Animals News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Some Tobacco Farmers Thrive Amid Challenges

Some Tobacco Farmers Thrive Amid Challenges

AP (Sep. 16, 2014) The South's tobacco country is surviving, and even thriving in some cases, as demand overseas keeps growers in the fields of one of America's oldest cash crops. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Scientists Given Rare Glimpse of 350-Kilo Colossal Squid

Scientists Given Rare Glimpse of 350-Kilo Colossal Squid

AFP (Sep. 16, 2014) Scientists say a female colossal squid weighing an estimated 350 kilograms (770 lbs) and thought to be only the second intact specimen ever found was carrying eggs when discovered in the Antarctic. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com
Raw: Scientists Examine Colossal Squid

Raw: Scientists Examine Colossal Squid

AP (Sep. 16, 2014) Squid experts in New Zealand thawed and examined an unusual catch on Tuesday: a colossal squid. It was captured in Antarctica's remote Ross Sea in December last year and has been frozen for eight months. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

AFP (Sep. 16, 2014) Since the arrival of Ebola in Ivory Coast, Ivorians have been abandoning their pets, particularly monkeys, in the fear that they may transmit the virus. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins