Featured Research

from universities, journals, and other organizations

Lactate metabolism target halts growth in lung cancer model

Date:
April 10, 2014
Source:
Beth Israel Deaconess Medical Center
Summary:
Targeting the enzyme responsible for the final step of glucose metabolism not only halts tumor growth in non-small-cell lung cancer, but actually leads to regression of established tumors, new research shows. Importantly the new findings also show that cancer initiating cells -tumor cells that possess stem-cell like characteristics which can give rise to new tumors -- are susceptible to LDH-A inhibition.

Cancer cells generate energy differently than normal cells, a characteristic that helps them to survive and metastasize. A major goal in the field of cancer metabolism is to find ways to overcome this survival advantage.

Now a research team led by investigators in the Cancer Center at Beth Israel Deaconess Medical Center (BIDMC) has found that targeting the enzyme responsible for the final step of glucose metabolism not only halts tumor growth in non-small-cell lung cancer, but actually leads to the regression of established tumors.

Importantly the new findings, which appear online April 10 in the journal Cell Metabolism, also show that cancer initiating cells -tumor cells that possess stem-cell like characteristics which can give rise to new tumors -- are susceptible to LDH-A inhibition.

"We've known for almost 100 years that increased lactate production is associated with aggressive tumors," says the study's senior author Pankaj Seth, PhD, an investigator in the Division of Interdisciplinary Medicine and Biotechnology at BIDMC and Assistant Professor of Medicine at Harvard Medical School (HMS). "So our team had a straightforward question: If you were to inhibit the production of lactate, what would happen? And we found that not only did tumors stop growing, they actually regressed. Most exciting, we also showed that inhibition of LDH-A impacts cancer initiating cells, a population of aggressive tumor cells not targeted by most current therapies."

Altered energy metabolism is a defining biochemical characteristic of cancer cells, and was first observed nearly a century ago by German scientist Otto Warburg in what has now become known as the "Warburg Effect." While normal cells usually produce most of their energy needs from burning fuels using oxygen, cancer's energy production is dependent on sugar or glucose, a process known as fermentative glycolysis.

"Cancer cells rely on anaerobic fermentation for the conversion of glucose to lactate," explains Seth. "This state of fermentative glycolysis is catalyzed by the A form of the LDH enzyme. LDH-A is elevated in cancer cells, and this enables tumor cells to convert the majority of their glucose stores into lactate, regardless of oxygen availability. This shifts the function of glucose metabolites from simple energy production to accelerated cell growth and replication." For this reason, he explains, LDH-A and the possibility of inhibiting its activity has been identified as a promising target in cancer treatments focused on preventing cancer cells from proliferating.

Non-small cell lung cancer (NSCLC) is highly glycolytic, accounts for more than 85 percent of all lung cancers and is the leading cause of cancer deaths. Fermentative glycolysis is promoted in NSCLC through oncogenic mutations in two critical proteins, K-RAS and EGFR. The investigators, therefore, created inducible LDH-A mouse models of non-small cell lung cancer expressing oncogenic K-RAS and EGFR.

"We wanted an established tumor so that we could ascertain how much LDH-A inhibition was needed," says Seth. By genetically adjusting LDH-A levels and comparing the results with that of a small molecule inhibitor, the team showed that when LDH-A was inhibited, not only did the tumors stop growing, they actually regressed in size from the point they were before LDH-A inhibition.

Next, the investigators obtained a small molecule LDH-A inhibitor drug and observed similar effects in cell culture experiments. These results further demonstrated that blocking fermentative glycolysis impacted cancer initiating cells, the small population of tumor-forming, self-renewing cancer cells associated with aggressive disease and poor prognosis.

To investigate the metabolic consequences of LDH-A inhibition, Seth collaborated with co-corresponding author Teresa Fan, PhD, of the University of Kentucky. They conducted a metabolic analysis in which glucose atoms labeled with the stable isotope of carbon were followed as the glucose was converted through the glycolytic pathway into a variety of products. These experiments were carried out in cultured lung cancer cells in the mouse model and in thin slices of human lung tumor tissue.

"The latter is a modern version of Warburg's original experiment," explains Seth. "Together, these experiments showed that LDH-A inhibition affects metabolism, as expected, and underlies the regression of tumors when there is insufficient enzyme to support growth and survival."

"The field of cancer metabolism has seen a resurgence in recent years," adds study coauthor Vikas P. Sukhatme, MD, PhD, BIDMC Chief Academic Officer and Victor J. Aresty Professor of Medicine at HMS. "Findings such as these, conducted in genetically engineered mouse models that are the gold standard by which to judge this data, offer hope that drugs targeting metabolic pathways may one day become part of our armamentarium against this dreadful disease."


Story Source:

The above story is based on materials provided by Beth Israel Deaconess Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. Han Xie, Jun-ichi Hanai, Jian-Guo Ren, Lev Kats, Kerri Burgess, Parul Bhargava, Sabina Signoretti, Julia Billiard, KevinJ. Duffy, Aaron Grant, Xiaoen Wang, PawelK. Lorkiewicz, Sabrina Schatzman, Michael Bousamra, AndrewN. Lane, RichardM. Higashi, TeresaW.M. Fan, PierPaolo Pandolfi, VikasP. Sukhatme, Pankaj Seth. Targeting Lactate Dehydrogenase-A Inhibits Tumorigenesis and Tumor Progression in Mouse Models of Lung Cancer and Impacts Tumor-Initiating Cells. Cell Metabolism, 2014; DOI: 10.1016/j.cmet.2014.03.003

Cite This Page:

Beth Israel Deaconess Medical Center. "Lactate metabolism target halts growth in lung cancer model." ScienceDaily. ScienceDaily, 10 April 2014. <www.sciencedaily.com/releases/2014/04/140410121937.htm>.
Beth Israel Deaconess Medical Center. (2014, April 10). Lactate metabolism target halts growth in lung cancer model. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2014/04/140410121937.htm
Beth Israel Deaconess Medical Center. "Lactate metabolism target halts growth in lung cancer model." ScienceDaily. www.sciencedaily.com/releases/2014/04/140410121937.htm (accessed October 20, 2014).

Share This



More Health & Medicine News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How Nigeria Beat Its Ebola Outbreak

How Nigeria Beat Its Ebola Outbreak

Newsy (Oct. 20, 2014) The World Health Organization has declared Nigeria free of Ebola. Health experts credit a bit of luck and the government's initial response. Video provided by Newsy
Powered by NewsLook.com
Another Study Suggests Viagra Is Good For The Heart

Another Study Suggests Viagra Is Good For The Heart

Newsy (Oct. 20, 2014) An ingredient in erectile-dysfunction medications such as Viagra could improve heart function. Perhaps not surprising, given Viagra's history. Video provided by Newsy
Powered by NewsLook.com
Ebola Worries End for Dozens on U.S. Watch Lists

Ebola Worries End for Dozens on U.S. Watch Lists

Reuters - US Online Video (Oct. 20, 2014) Forty-three people who had contact with Thomas Eric Duncan, the first person diagnosed with Ebola in the U.S., were cleared overnight of twice-daily monitoring after 21 days of showing no symptoms. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Fauci: Ebola Protocols to Focus on Training

Fauci: Ebola Protocols to Focus on Training

AP (Oct. 20, 2014) Dr. Anthony Fauci, head of the National Institute of Allergy and Infectious Diseases, says he expects revised CDC protocols on Ebola to focus on training, observation and ensuring health care workers are more protected. (Oct. 20) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins