Featured Research

from universities, journals, and other organizations

Let the sun shine in: Redirecting sunlight to dark urban alleyways

Date:
April 14, 2014
Source:
The Optical Society
Summary:
In response to ever-crowded urban conditions in developing countries, researchers in Egypt have developed an inexpensive way of re-directing natural sunlight into dimly lit streets and alleys, where lack of sun is linked to health problems. The new optical device can increase brightness in alleyways by up to 400 percent.

A simulation of the illuminance of an alleyway at noon at two different times of year, autumn (top) and winter (bottom). The new light-directing panel increases the amount of light that reaches the alleyway, as indicated by the higher amounts of red and yellow in the right-hand images (“with panel”) compared to the left-hand images (“without panel”).
Credit: Optics Express

In dense, urban centers around the world, many people live and work in dim and narrow streets surrounded by tall buildings that block sunlight. And as the global population continues to rise and buildings are jammed closer together, the darkness will only spread.

To alleviate the problem, Egyptian researchers have developed a corrugated, translucent panel that redirects sunlight onto narrow streets and alleyways. The panel is mounted on rooftops and hung over the edge at an angle, where it spreads sunlight onto the street below. The researchers describe their design in a paper published today in Energy Express, a supplement of The Optical Society's (OSA) open-access journal Optics Express.

"We expect the device to provide illumination to perform everyday tasks, and improve the quality of light and health conditions in dark areas," said Amr Safwat, a professor of electronics and communications engineering at Ain Shams University in Cairo, Egypt. These dimly lit areas specifically include narrow streets in developing countries, but Safwat said the new panel could be used in any country as a greener, cheaper, and more pleasant alternative to fluorescent and other artificial light.

While other commercially available window-like devices can redirect light, they are designed for shade and redirecting glare or for brightening a room -- not a narrow street. So the researchers decided to create their own design. They wanted a simple way to redistribute natural light without the need for a tracking device that follows the rising and setting sun.

What they came up with is a panel made of polymethyl methacrylate (PMMA), the same acrylic plastic of which Plexiglas is made. The bottom of the panel is smooth while the top is covered in ridges that are based on a sine wave, the mathematical function that describes everything from light to pendulums. The researchers used computer simulations to find the size and shape of the grooves that distribute the most amount of sunlight in a wide range of sun positions all year round, whether it's high or low in the sky. A sine-wave pattern is also easy to manufacture.

Using simulations of sunlight shining on an alleyway, the researchers found that their panels increased illumination by 200 percent and 400 percent in autumn and winter, respectively, when sunlight is most limited. They also tested a small prototype over a 0.4-meter-by-0.4-meter shaft that is 1.2-meters deep and found that it lit up the area as designed.

The next step, Safwat said, will be to build a full-scale model 10 times bigger to validate their calculations and to test it in a real alleyway. The team then plans to market and commercialize the panel. He estimates that a one-square-meter panel and a frame will cost between $70 and $100.

And that may be a small price to pay for the benefits of sunlight. The lack of sun in urban areas doesn't just make life gloomy; it can be harmful to your health, Safwat said.

"Research has shown that lack of natural lighting can cause severe physiological problems," such as serious mood changes, excessive sleeping, loss of energy and depression, Safwat said.

He also noted that using sunlight to illuminate historical places -- such as ancient alleyways in Egypt -- also helps preserve the authenticity of the site, maintaining its cultural value and historical significance.

This work was funded by the Science and Technology Development Fund of Egypt.


Story Source:

The above story is based on materials provided by The Optical Society. Note: Materials may be edited for content and length.


Journal Reference:

  1. Sally I. El-Henawy, Mohamed W. N. Mohamed, Islam A. Mashaly, Osama N. Mohamed, Ola Galal, Iman Taha, Khaled Nassar, Amr M. E. Safwat. Illumination of dense urban areas by light redirecting panels. Optics Express, 2014; 22 (S3): A895 DOI: 10.1364/OE.22.00A895

Cite This Page:

The Optical Society. "Let the sun shine in: Redirecting sunlight to dark urban alleyways." ScienceDaily. ScienceDaily, 14 April 2014. <www.sciencedaily.com/releases/2014/04/140414112441.htm>.
The Optical Society. (2014, April 14). Let the sun shine in: Redirecting sunlight to dark urban alleyways. ScienceDaily. Retrieved August 28, 2014 from www.sciencedaily.com/releases/2014/04/140414112441.htm
The Optical Society. "Let the sun shine in: Redirecting sunlight to dark urban alleyways." ScienceDaily. www.sciencedaily.com/releases/2014/04/140414112441.htm (accessed August 28, 2014).

Share This




More Matter & Energy News

Thursday, August 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com
Breakingviews: India Coal Strained by Supreme Court Ruling

Breakingviews: India Coal Strained by Supreme Court Ruling

Reuters - Business Video Online (Aug. 26, 2014) An acute coal shortage is likely to be aggravated as India's supreme court declared government coal allocations illegal, says Breakingviews' Peter Thal Larsen. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins