Featured Research

from universities, journals, and other organizations

Under some LED bulbs whites aren't 'whiter than white'

Date:
April 18, 2014
Source:
Penn State
Summary:
For years, companies have been adding whiteners to laundry detergent, paints, plastics, paper and fabrics to make whites look 'whiter than white,' but now, with a switch away from incandescent and fluorescent lighting, different degrees of whites may all look the same, according to experts in lighting.

Kevin Houser, Professor of Architectural Engineering at Penn State, sorts tiles in a light box in the departments illuminating engineering lab for observation under several light sources.
Credit: Patrick Mansell

For years, companies have been adding whiteners to laundry detergent, paints, plastics, paper and fabrics to make whites look "whiter than white," but now, with a switch away from incandescent and fluorescent lighting, different degrees of whites may all look the same, according to experts in lighting.

"Retailers have long been concerned with the color-rendering qualities of their lighting, but less aware how light sources render white," said Kevin W. Houser, professor of architectural engineering, Penn State.

Not long ago, the only practical choices for home, office or commercial lighting were incandescent or fluorescent bulbs. More recently, compact fluorescent bulbs, which use less energy than incandescent bulbs, became popular, but compact fluorescents are not always accepted by consumers because of poor color rendition, lack of dimability, slow warm-up to full output and because they contain mercury.

The most recent popular entry into home or commercial lighting are light-emitting diode (LED) bulbs, which while currently expensive, are often even more energy-saving than compact fluorescents.

While some LED bulbs will make colors pop, the vast majority do not showcase or differentiate the appearance of white products, according to Houser, because all white light is not the same.

Different light sources contain different combinations of the wavelengths of light. A broad variety of wavelengths will create light that appears white to the human eye, but different mixtures of wavelengths will affect how colors are rendered. When it comes to seeing the color white, the light source is very important because of how product manufacturers make white products appear white using whiteners.

Whiteners contain fluorescent materials that glow under violet and ultraviolet light. Sunlight, fluorescent light and incandescent light all produce some light in the violet and ultraviolet range. The whiteners used in consumer products work under those conditions, resulting in a bright white perception.

However, most current LED bulbs use blue LEDs to excite a phosphor that then glows white, but produces no violet or ultraviolet light.

Houser, working with a Penn State student and researchers from Soraa Inc. of Fremont, Calif., asked 39 participants to observe various combinations of light sources and white objects to see how the light source affected perceptions of white. They report their results in a recent issue of Leukos, the journal of the Illuminating Engineering Society.

The participants completed three tests -- selection, forced choice and sorting -- using five different light sources -- a blue-pumped LED, filtered halogen lamp and three violet-pumped LEDs with differing levels of violet emissions.

In the sorting experiment, the researchers placed six calibrated whiteness cards of varying whiteness on a table in a booth enclosed on three sides. They asked participants to arrange the cards in order of whiteness under each of the five light sources.

Under the halogen light and violet-pumped LED lights with 7 and 11 percent violet emission, the order was correct. Two of the cards were flipped under violet-pumped LEDs with only three percent violet emissions.

"With the LED but only blue pumping the phosphors, the order became random," said Houser. "People simply couldn't tell the difference between the cards. Under the blue-pumped LED, which is notable because blue-pumped LEDs are by far the most common type for general lighting."

In the forced choice test, two nominally identical cards were placed in each of two booths containing different light sources. Participants were asked to choose the card that was whiter under all of the permutations of each of the five light sources.

"The light sources with higher violet component permitted the best discrimination between the targets," said Houser.

In the selection test, researchers asked the participants to look at a reference card in one booth and rank the cards in a second booth as either as white or whiter than the reference card. Again the blue-pumped LEDs did not fare well.

The researchers note that "engineering of an LED source's spectrum is necessary for an accurate rendering of whiteness."


Story Source:

The above story is based on materials provided by Penn State. Note: Materials may be edited for content and length.


Journal Reference:

  1. Kevin W. Houser, Minchen Wei, Aurιlien David, Michael R. Krames. Whiteness Perception under LED Illumination. LEUKOS, 2014; 10 (3): 165 DOI: 10.1080/15502724.2014.902750

Cite This Page:

Penn State. "Under some LED bulbs whites aren't 'whiter than white'." ScienceDaily. ScienceDaily, 18 April 2014. <www.sciencedaily.com/releases/2014/04/140418141113.htm>.
Penn State. (2014, April 18). Under some LED bulbs whites aren't 'whiter than white'. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2014/04/140418141113.htm
Penn State. "Under some LED bulbs whites aren't 'whiter than white'." ScienceDaily. www.sciencedaily.com/releases/2014/04/140418141113.htm (accessed October 1, 2014).

Share This



More Matter & Energy News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) — Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) — Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) — A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) — A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins