Featured Research

from universities, journals, and other organizations

'Chaperone' compounds offer new approach to Alzheimer's treatment

Date:
April 20, 2014
Source:
Columbia University Medical Center
Summary:
A wholly new approach to the treatment of Alzheimer's disease involving the so-called retromer protein complex has been devised by researchers. Retromer plays a vital role in neurons, steering amyloid precursor protein (APP) away from a region of the cell where APP is cleaved, creating the potentially toxic byproduct amyloid-beta, which is thought to contribute to the development of Alzheimer's.

Researchers have identified a new class of compounds -- pharmacologic chaperones -- that can stabilize the retromer protein complex (the blue and orange structure shows part of the complex). Retromer plays a vital role in keeping amyloid precursor from being cleaved and producing the toxic byproduct amyloid beta, which contributes to the development of Alzheimer's. The study found that when the chaperone named R55 (the multicolored molecule) was added to neurons in cell culture, it bound to and stabilized retromer, increasing retromer levels and lowering amyloid-beta levels.
Credit: Nature Chemical Biology and lab of Scott A. Small, MD/Columbia University Medical Center

A team of researchers from Columbia University Medical Center (CUMC), Weill Cornell Medical College, and Brandeis University has devised a wholly new approach to the treatment of Alzheimer's disease involving the so-called retromer protein complex. Retromer plays a vital role in neurons, steering amyloid precursor protein (APP) away from a region of the cell where APP is cleaved, creating the potentially toxic byproduct amyloid-beta, which is thought to contribute to the development of Alzheimer's.

Related Articles


Using computer-based virtual screening, the researchers identified a new class of compounds, called pharmacologic chaperones, that can significantly increase retromer levels and decrease amyloid-beta levels in cultured hippocampal neurons, without apparent cell toxicity. The study was published today in the online edition of the journal Nature Chemical Biology.

“Our findings identify a novel class of pharmacologic agents that are designed to treat neurologic disease by targeting a defect in cell biology, rather than a defect in molecular biology,” said Scott Small, MD, the Boris and Rose Katz Professor of Neurology, Director of the Alzheimer's Disease Research Center in the Taub Institute for Research on Alzheimer's Disease and the Aging Brain at CUMC, and a senior author of the paper. “This approach may prove to be safer and more effective than conventional treatments for neurologic disease, which typically target single proteins.”

In 2005, Dr. Small and his colleagues showed that retromer is deficient in the brains of patients with Alzheimer’s disease. In cultured neurons, they showed that reducing retromer levels raised amyloid-beta levels, while increasing retromer levels had the opposite effect. Three years later, he showed that reducing retromer had the same effect in animal models, and that these changes led to Alzheimer's-like symptoms. Retromer abnormalities have also been observed in Parkinson’s disease.

In discussions at a scientific meeting, Dr. Small and co-senior authors Gregory A. Petsko, DPhil, Arthur J. Mahon Professor of Neurology and Neuroscience in the Feil Family Brain and Mind Research Institute and Director of the Helen and Robert Appel Alzheimer’s Disease Research Institute at Weill Cornell Medical College, and Dagmar Ringe, PhD, Harold and Bernice Davis Professor in the Departments of Biochemistry and Chemistry and in the Rosenstiel Basic Medical Sciences Research Center at Brandeis University, began wondering if there was a way to stabilize retromer (that is, prevent it from degrading) and bolster its function. “The idea that it would be beneficial to protect a protein’s structure is one that nature figured out a long time ago,” said Dr. Petsko. “We’re just learning how to do that pharmacologically.”

Other researchers had already determined retromer’s three-dimensional structure. “Our challenge was to find small molecules—or pharmacologic chaperones—that could bind to retromer’s weak point and stabilize the whole protein complex,” said Dr. Ringe.

This was accomplished through computerized virtual, or in silico, screening of known chemical compounds, simulating how the compounds might dock with the retromer protein complex. (In conventional screening, compounds are physically tested to see whether they interact with the intended target, a costlier and lengthier process.) The screening identified 100 potential retromer-stabilizing candidates, 24 of which showed particular promise. Of those, one compound, called R55, was found to significantly increase the stability of retromer when the complex was subjected to heat stress.

The researchers then looked at how R55 affected neurons of the hippocampus, a key brain structure involved in learning and memory. “One concern was that this compound would be toxic,” said Dr. Diego Berman, assistant professor of clinical pathology and cell biology at CUMC and a lead author. “But R55 was found to be relatively non-toxic in mouse neurons in cell culture.”

More important, a subsequent experiment showed that the compound significantly increased retromer levels and decreased amyloid-beta levels in cultured neurons taken from healthy mice and from a mouse model of Alzheimer's. The researchers are currently testing the clinical effects of R55 in the actual mouse model .

“The odds that this particular compound will pan out are low, but the paper provides a proof of principle for the efficacy of retromer pharmacologic chaperones,” said Dr. Petsko. “While we’re testing R55, we will be developing chemical analogs in the hope of finding compounds that are more effective.”


Story Source:

The above story is based on materials provided by Columbia University Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. Vincent J Mecozzi, Diego E Berman, Sabrina Simoes, Chris Vetanovetz, Mehraj R Awal, Vivek M Patel, Remy T Schneider, Gregory A Petsko, Dagmar Ringe, Scott A Small. Pharmacological chaperones stabilize retromer to limit APP processing. Nature Chemical Biology, 2014; DOI: 10.1038/nchembio.1508

Cite This Page:

Columbia University Medical Center. "'Chaperone' compounds offer new approach to Alzheimer's treatment." ScienceDaily. ScienceDaily, 20 April 2014. <www.sciencedaily.com/releases/2014/04/140420131519.htm>.
Columbia University Medical Center. (2014, April 20). 'Chaperone' compounds offer new approach to Alzheimer's treatment. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2014/04/140420131519.htm
Columbia University Medical Center. "'Chaperone' compounds offer new approach to Alzheimer's treatment." ScienceDaily. www.sciencedaily.com/releases/2014/04/140420131519.htm (accessed October 25, 2014).

Share This



More Mind & Brain News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Academic Scandal Shocks UNC

Academic Scandal Shocks UNC

AP (Oct. 23, 2014) A scandal involving bogus classes and inflated grades at the University of North Carolina was bigger than previously reported, a new investigation found. (Oct. 23) Video provided by AP
Powered by NewsLook.com
Working Mother Getaway: Beaches Turks & Caicos

Working Mother Getaway: Beaches Turks & Caicos

Working Mother (Oct. 22, 2014) Feast your eyes on this gorgeous family-friendly resort. Video provided by Working Mother
Powered by NewsLook.com
What Your Favorite Color Says About You

What Your Favorite Color Says About You

Buzz60 (Oct. 22, 2014) We all have one color we love to wear, and believe it or not, your color preference may reveal some of your character traits. In celebration of National Color Day, Krystin Goodwin (@kyrstingoodwin) highlights what your favorite colors may say about you. Video provided by Buzz60
Powered by NewsLook.com
First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

Newsy (Oct. 21, 2014) A medical team has for the first time given a man the ability to walk again after transplanting cells from his brain onto his severed spinal cord. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins