Featured Research

from universities, journals, and other organizations

Computer-assisted accelerator design

Date:
April 21, 2014
Source:
Brookhaven National Laboratory
Summary:
Accelerator physicists are using custom designed software to create a 3-D virtual model of the electron accelerator physicists hope to build inside the tunnel currently housing the Relativistic Heavy Ion Collider at Brookhaven National Laboratory.

Accelerator physicist Stephen Brooks explains how multiple electron beams would circulate in the current design for eRHIC, a proposed electron ion-collider Brookhaven hopes to build using existing RHIC infrastructure.
Credit: Brookhaven National Laboratory

If you walk by room 201 in Building 911 at the U.S. Department of Energy's Brookhaven National Laboratory, you might think Stephen Brooks is playing a cool new video game. But Brooks is doing important, innovative work. He's using his own custom designed software to create a 3-D virtual model of the electron accelerator Brookhaven physicists hope to build inside the tunnel currently housing the Relativistic Heavy Ion Collider (RHIC). His mission is to put the virtual pieces together and help test out designs for eRHIC -- a proposed machine that would provide unforeseen insight into the inner structure of protons and heavy ions.

"Once the eRHIC layout is in my code, I put beams through it to verify it works," Brooks said. "But I can also add errors in the alignment of the magnets, beams, and so on to verify it will work in a practical setting."

By work he means produce extremely focused high-energy electron beams to pierce into the very heart of RHIC's counter-circulating protons or heavy ions to create precision 3-D images of gluons -- the particles that bind quarks within protons and neutrons, thus imparting visible matter with 99 percent of its mass. This proposed electron-ion collider would open a new window into nuclear matter, ensuring U.S. leadership in the field for the next several decades. And building such a machine by adding an electron accelerator to the existing RHIC complex would be a cost-effective strategy for achieving this goal.

But keeping the cost down and ensuring functionality of the hundreds of different accelerator components takes planning to be sure things go right.

Designing a subatomic particle racetrack

While there are many codes that can track particles through accelerators, the fully 3-D, interactive nature of Brooks' code, and the ability to incorporate complex accelerators the size of RHIC, makes it unique.

Using a mouse to navigate from a birds-eye view to a close-up, 3-D, edge-on view of the magnets and the beams circulating inside the machine, he explains, "We can use this code to test that the individual accelerator components in the machine are compatible with each other when they are assembled together." And to be sure those components will fit within the existing RHIC tunnel, the model incorporates a conventional architectural drawing including physical constraints like concrete walls.

Even more innovative, Brooks' program incorporates an "evolutionary algorithm optimization feature" -- essentially an artificial intelligence mode that can vary any aspect of the accelerator and search for the best design to achieve a particular objective by running repeated simulations.

One goal is to track and minimize the amount of synchrotron radiation emitted by the electron beam. That's energy that spews off tangent to the charged particles' circular path, like water droplets flying off a wet towel swung around in a circle, gradually depleting the beam's energy.

"The design tool also determines, for a given layout of magnets and sequence of beam energies, whether each beam will be focused in a stable way and not spread out in size and become unuseable," Brooks said.

Two rings are better (and cheaper) than six

Testing different designs and parameters, Brooks and other accelerator scientists arrived at a plan that circulates multiple beams of electrons at a range of energies within each of two electron accelerator rings. It incorporates an innovative "non-scaling, fixed field, alternating gradient" (FFAG) accelerator design originally developed by Brookhaven physicist Dejan Trbojevic, who supervises Brooks.

The "alternating gradient" -- alternating directions of the magnetic field -- keeps the design relatively compact. "Fixed field" means that beams don't have to be injected periodically and ramped up to reach higher energy. Instead, the beam can be on continuously as it is brought up to "speed." And because non-scaling FFAG accelerators can be made out of fairly standard accelerator magnets, such a design would achieve high collision rates while controlling costs.

"Trbojevic realized that you can build magnet channels with stronger focusing than normal that can tolerate a large range of beam energies, with the beams of different energy transported side-by-side of each other within the same ring," Brooks said. "At eRHIC, the beams would spiral through the machine with the external linear accelerator adding energy each turn, and the beam then following the next path farther out but still within the same beam pipe."

Brooks' optimization software tool helped the team identify the ideal design: with five electron beams in a low-energy ring, spanning a factor of 5x in energy, and up to 11 electron beams in a high-energy ring, spanning a factor of 2.7x. This design, fitting all these beams within two stacked accelerator rings instead of the six that were called for in an earlier design, represents a significant cost savings.

So, with its results pointing to fewer rings, relatively low-cost magnets, continuous beam, minimized energy loss, and a plan for how to absorb that lost energy, Brooks' "gaming" with the eRHIC accelerator design seems to be paying off.


Story Source:

The above story is based on materials provided by Brookhaven National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Brookhaven National Laboratory. "Computer-assisted accelerator design." ScienceDaily. ScienceDaily, 21 April 2014. <www.sciencedaily.com/releases/2014/04/140421102325.htm>.
Brookhaven National Laboratory. (2014, April 21). Computer-assisted accelerator design. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2014/04/140421102325.htm
Brookhaven National Laboratory. "Computer-assisted accelerator design." ScienceDaily. www.sciencedaily.com/releases/2014/04/140421102325.htm (accessed July 24, 2014).

Share This




More Matter & Energy News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins