Featured Research

from universities, journals, and other organizations

How do liquid foams completely block sound?

Date:
April 24, 2014
Source:
CNRS
Summary:
Liquid foams have a remarkable property: they completely block the transmission of sound over a wide range of frequencies. Physicists have studied how sound is attenuated in liquid foams. Their findings open the way to the development of tools called acoustic probes that could be used to monitor the quality of foams used in industry, especially in the mining and petroleum sectors.

This image shows a fine view of the distribution of the liquid phase in a liquid foam. The liquid channels that support the thin films, some of which can be seen here, are clearly visible. The behavior of both channels and films caused by an acoustic wave explains the unusual acoustic properties of liquid foams.
Credit: © Laboratoire "Matière et systèmes complexes" (CNRS/Université Paris Diderot)

Liquid foams have a remarkable property: they completely block the transmission of sound over a wide range of frequencies. CNRS physicists working in collaboration with teams from Paris Diderot and Rennes Universities* have studied how sound is attenuated in liquid foams. Their findings, published in Physical Review Letters, open the way to the development of tools called acoustic probes that could be used to monitor the quality of foams used in industry, especially in the mining and petroleum sectors.

Much research has been carried out in acoustics in order to understand how sound propagates through a material. One of the classic approaches is to send an acoustic wave through it and listen to the response, which provides key information about the material, in the same way as listening to the sound produced by tapping on a wall indicates whether it is hollow. This is why researchers analyze how various materials, from the simplest to the most complex, react when they are struck.

One of these is however keeping its secrets: liquid foam. This is a difficult material to study since it is short-lived and sound does not travel through it easily. Until now, there has been no acoustic probe for foams. The most frequently used probes rely on electrical conductivity to determine the amount of liquid contained in a foam. However, some of these substances are made up of non-conducting liquid, making it impossible to characterize them. Adding liquid foams to the list of materials that can be probed by acoustic waves is therefore central to ensuring that every type of foam used can be fully characterized.

How do liquid foams block sound? A key finding has been revealed in a recent study by researchers from the 'Matière et Systèmes Complexes' Laboratory (CNRS/Université Paris Diderot) and the Institut de Physique de Rennes (CNRS/Université Rennes 1).  Characterization of foams is essential for measuring the speed and attenuation of sound in foams of known composition. The results show that sound propagation varies greatly according to the frequency of the wave used. The researchers propose a simple interpretation of these observations. Foams are made up of 90% air plus a liquid, and this liquid is distributed between films and channels that support them.

However, these two structures have very different geometries and masses: films have a large surface area and a small mass, while channels are narrower but have greater mass. The vibration of air caused by the acoustic wave displaces the films, which in turn pull on the channels. At low frequencies, the speed of sound is very low (around 30 meters per second): the sound is slowed down by the coordinated motion of the films and channels, but is not blocked. At high frequencies, the speed of sound increases (approximately 220 meters per second): only the films move, thus also allowing the sound to travel through the foam. However, at intermediate frequencies, the films behave anomalously: they move in the "wrong" direction, in other words towards the left when the air displaced by the sound pushes them to the right, which prevents the channels from moving. The sound is therefore blocked in the bubbles over a wide range of frequencies.

This work thus helps to solve the mystery of acoustics in liquid foams. It will pave the way for the development of acoustic probes that can be applied to such materials, which are an everyday part of life as well as being widely used in industry.

* From the 'Matière et Systèmes Complexes' Laboratory (CNRS/Université Paris Diderot) and the Institut de Physique de Rennes (CNRS/Université Rennes 1).

The study, which is part of a project funded by the French National Research Agency (ANR), brings together for the first time acoustics experts and foam specialists.


Story Source:

The above story is based on materials provided by CNRS. Note: Materials may be edited for content and length.


Journal Reference:

  1. Juliette Pierre, Benjamin Dollet, Valentin Leroy. Resonant Acoustic Propagation and Negative Density in Liquid Foams. Physical Review Letters, 2014; 112 (14) DOI: 10.1103/PhysRevLett.112.148307

Cite This Page:

CNRS. "How do liquid foams completely block sound?." ScienceDaily. ScienceDaily, 24 April 2014. <www.sciencedaily.com/releases/2014/04/140424102254.htm>.
CNRS. (2014, April 24). How do liquid foams completely block sound?. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2014/04/140424102254.htm
CNRS. "How do liquid foams completely block sound?." ScienceDaily. www.sciencedaily.com/releases/2014/04/140424102254.htm (accessed July 24, 2014).

Share This




More Matter & Energy News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) — Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) — 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com
Boeing Ups Outlook on 52% Profit Jump

Boeing Ups Outlook on 52% Profit Jump

Reuters - Business Video Online (July 23, 2014) — Commercial aircraft deliveries rose seven percent at Boeing, prompting the aerospace company to boost full-year profit guidance- though quarterly revenues missed analyst estimates. Bobbi Rebell reports. Video provided by Reuters
Powered by NewsLook.com
Europe's Car Market on the Rebound?

Europe's Car Market on the Rebound?

Reuters - Business Video Online (July 23, 2014) — Daimler kicks off a round of second-quarter earnings results from Europe's top carmakers with a healthy set of numbers - prompting hopes that stronger sales in Europe will counter weakness in emerging markets. Hayley Platt reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins