Featured Research

from universities, journals, and other organizations

Cartilage, made to order: Living human cartilage grown on lab chip

Date:
April 27, 2014
Source:
Federation of American Societies for Experimental Biology (FASEB)
Summary:
The first example of living human cartilage grown on a laboratory chip has been created by scientists. The researchers ultimately aim to use their innovative 3-D printing approach to create replacement cartilage for patients with osteoarthritis or soldiers with battlefield injuries. Osteoarthritis is marked by a gradual disintegration of cartilage, a flexible tissue that provides padding where bones come together in a joint. Causing severe pain and loss of mobility in joints such as knees and fingers, osteoarthritis is one of the leading causes of physical disability in the United States.

Cartilage under a microscope.
Credit: By Fanny CASTETS (Own work) [GFDL, CC-BY-SA-3.0 or CC-BY-2.5], via Wikimedia Commons

In a significant step toward reducing the heavy toll of osteoarthritis around the world, scientists have created the first example of living human cartilage grown on a laboratory chip. The researchers ultimately aim to use their innovative 3-D printing approach to create replacement cartilage for patients with osteoarthritis or soldiers with battlefield injuries.

"Osteoarthritis has a severe impact on quality of life, and there is an urgent need to understand the origin of the disease and develop effective treatments" said Rocky Tuan, Ph.D., director of the Center for Cellular and Molecular Engineering at the University of Pittsburgh School of Medicine, member of the American Association of Anatomists and the study's senior investigator. "We hope that the methods we're developing will really make a difference, both in the study of the disease and, ultimately, in treatments for people with cartilage degeneration or joint injuries."

Osteoarthritis is marked by a gradual disintegration of cartilage, a flexible tissue that provides padding where bones come together in a joint. Causing severe pain and loss of mobility in joints such as knees and fingers, osteoarthritis is one of the leading causes of physical disability in the United States. It is estimated that up to 1 in 2 Americans will develop some form of the disease in their lifetime.

Although some treatments can help relieve arthritis symptoms, there is no cure. Many patients with severe arthritis ultimately require a joint replacement.

Tuan said artificial cartilage built using a patient's own stem cells could offer enormous therapeutic potential. "Ideally we would like to be able to regenerate this tissue so people can avoid having to get a joint replacement, which is a pretty drastic procedure and is unfortunately something that some patients have to go through multiple times," said Tuan.

In addition to offering relief for people with osteoarthritis, Tuan said replacement cartilage could also be a game-changer for people with debilitating joint injuries, such as soldiers with battlefield injuries. "We really want these technologies to help wounded warriors return to service or pursue a meaningful post-combat life," said Tuan, who co-directs the Armed Forces Institute of Regenerative Medicine, a national consortium focused on developing regenerative therapies for injured soldiers. "We are on a mission."

Creating artificial cartilage requires three main elements: stem cells, biological factors to make the cells grow into cartilage, and a scaffold to give the tissue its shape. Tuan's 3-D printing approach achieves all three by extruding thin layers of stem cells embedded in a solution that retains its shape and provides growth factors. "We essentially speed up the development process by giving the cells everything they need, while creating a scaffold to give the tissue the exact shape and structure that we want," said Tuan.

The ultimate vision is to give doctors a tool they can thread through a catheter to print new cartilage right where it's needed in the patient's body. Although other researchers have experimented with 3-D printing approaches for cartilage, Tuan's method represents a significant step forward because it uses visible light, while others have required UV light, which can be harmful to living cells.

In another significant step, Tuan has successfully used the 3-D printing method to produce the first "tissue-on-a-chip" replica of the bone-cartilage interface. Housing 96 blocks of living human tissue 4 millimeters across by 8 millimeters deep, the chip could serve as a test-bed for researchers to learn about how osteoarthritis develops and develop new drugs. "With more testing, I think we'll be able to use our platform to simulate osteoarthritis, which would be extremely useful since scientists really know very little about how the disease develops," said Tuan.

As a next step, the team is working to combine their 3-D printing method with a nanofiber spinning technique they developed previously. They hope combining the two methods will provide a more robust scaffold and allow them to create artificial cartilage that even more closely resembles natural cartilage.

Rocky Tuan presented the research during the Experimental Biology 2014 meeting on Sunday, April 27.

The study receives funding from the Commonwealth of Pennsylvania Department of Health, the National Institutes of Health and the U.S. Department of Defense.


Story Source:

The above story is based on materials provided by Federation of American Societies for Experimental Biology (FASEB). Note: Materials may be edited for content and length.


Cite This Page:

Federation of American Societies for Experimental Biology (FASEB). "Cartilage, made to order: Living human cartilage grown on lab chip." ScienceDaily. ScienceDaily, 27 April 2014. <www.sciencedaily.com/releases/2014/04/140427185157.htm>.
Federation of American Societies for Experimental Biology (FASEB). (2014, April 27). Cartilage, made to order: Living human cartilage grown on lab chip. ScienceDaily. Retrieved September 21, 2014 from www.sciencedaily.com/releases/2014/04/140427185157.htm
Federation of American Societies for Experimental Biology (FASEB). "Cartilage, made to order: Living human cartilage grown on lab chip." ScienceDaily. www.sciencedaily.com/releases/2014/04/140427185157.htm (accessed September 21, 2014).

Share This



More Health & Medicine News

Sunday, September 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Sierra Leone in Lockdown to Control Ebola

Sierra Leone in Lockdown to Control Ebola

AP (Sep. 21, 2014) Sierra Leone residents remained in lockdown on Saturday as part of a massive effort to confine millions of people to their homes in a bid to stem the biggest Ebola outbreak in history. (Sept. 20) Video provided by AP
Powered by NewsLook.com
Sierra Leone's Nationwide Ebola Curfew Underway

Sierra Leone's Nationwide Ebola Curfew Underway

Newsy (Sep. 20, 2014) Sierra Leone is locked down as aid workers and volunteers look for new cases of Ebola. Video provided by Newsy
Powered by NewsLook.com
Changes Found In Brain After One Dose Of Antidepressants

Changes Found In Brain After One Dose Of Antidepressants

Newsy (Sep. 19, 2014) A study suggest antidepressants can kick in much sooner than previously thought. Video provided by Newsy
Powered by NewsLook.com
Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins