Featured Research

from universities, journals, and other organizations

Technological advancements extend long-term survival of transplanted hearts across species

Date:
April 28, 2014
Source:
American Association for Thoracic Surgery (AATS)
Summary:
The use of transplant organs from animals (xenotransplantation) could help to compensate for the shortage of human organs available for transplant. Researchers have demonstrated that by using hearts from genetically engineered pigs in combination with target-specific immunosuppression of recipient baboons, organ survival can be significantly prolonged. This has potential for paving the way for the use of animal organs for transplantation into humans.

Cardiac transplantation is the treatment of choice for end stage heart failure. According to the National Heart, Lung, and Blood Institute (NHLBI) of the National Institutes of Health, approximately 3,000 people in the US are on the waiting list for a heart transplant, while only 2,000 donor hearts become available each year. Therefore for the cardiac patients currently waiting for organs, mechanical assist devices are the only options available. These devices, however, are not perfect and have issues with power supplies, infection, and both clotting and hemolysis.

Transplantation using an animal organ, or xenotransplantation, has been proposed as a valid option to save valuable human lives. Muhammad M. Mohiuddin, MD, of the Cardiothoracic Surgery Research Program at the NHLBI, and co-investigators have now developed techniques to overcome some of the immunologic roadblocks that hinder successful xenotransplantation using genetically engineered pigs as a source of donor organs. Pigs were chosen because their anatomy is compatible with that of humans and they have a rapid breeding cycle, among other reasons.

As the result of recent improvements in technology for genetic modification of pigs, genes that are immunogenic for humans have been eliminated ('knocked out") and several human genes have been added to the pig genome. Grafts from these genetically engineered (GE) pigs are less likely to be seen as foreign, thus reducing the immune reaction against them. These modifications should also allow transplants utilizing lower amounts of toxic immunosuppressive drugs.

"These recent scientific developments in the field of genetic engineering, along with the generation of novel target specific immune suppression, and their favorable impact on organ and cellular transplantation, may instill a new ray of hope for thousands of patients waiting for human donor organs," comments Dr. Mohiuddin.

The NHLBI group was fortunate to have access to GE pigs through close collaboration with Revivicor, Inc. Experiments using these GE pig hearts, transplanted in the abdomen of baboons along with their native hearts, were designed to study the usefulness of these GE pigs along with several new target-specific immunosuppressive agents in prolonging the graft survival. Through the combination of a pig heart with certain gene modifications, with drugs suppressing both T and B cell immune responses, investigators were able to prolong the graft survival in baboons to over one year. This unique achievement by the NIH laboratory is twice as long as previously reported.

The long-term surviving grafts exhibit normal histology (cellular architecture) and contractility. The researchers' next step is to use hearts from the same GE pigs with the same immunosuppression utilized in the current experiments to test their ability to provide full life support by replacing the original baboon heart.

"Based on the data from long-term surviving grafts, we are hopeful that we will be able to repeat our results in the life-supporting model. If successful, this method could change the current transplant paradigm, eliminating the shortage of donor organs including hearts, livers, kidneys, intestine, as well as insulin producing cells for treatment of diabetes," concludes Dr. Mohiuddin. He is presenting the results of this research at the 94th AATS Annual Meeting in Toronto, ON, Canada on April 28, 2014.


Story Source:

The above story is based on materials provided by American Association for Thoracic Surgery (AATS). Note: Materials may be edited for content and length.


Cite This Page:

American Association for Thoracic Surgery (AATS). "Technological advancements extend long-term survival of transplanted hearts across species." ScienceDaily. ScienceDaily, 28 April 2014. <www.sciencedaily.com/releases/2014/04/140428143128.htm>.
American Association for Thoracic Surgery (AATS). (2014, April 28). Technological advancements extend long-term survival of transplanted hearts across species. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2014/04/140428143128.htm
American Association for Thoracic Surgery (AATS). "Technological advancements extend long-term survival of transplanted hearts across species." ScienceDaily. www.sciencedaily.com/releases/2014/04/140428143128.htm (accessed August 21, 2014).

Share This




More Health & Medicine News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Cadavers, a Teen, and a Medical School Dream

Cadavers, a Teen, and a Medical School Dream

AP (Aug. 21, 2014) Contains graphic content. He's only 17. But Johntrell Bowles has wanted to be a doctor from a young age, despite the odds against him. He was recently the youngest participant in a cadaver program at the Indiana University NW medical school. (Aug. 21) Video provided by AP
Powered by NewsLook.com
Possible Ebola Patient in Isolation at California Hospital

Possible Ebola Patient in Isolation at California Hospital

Reuters - US Online Video (Aug. 20, 2014) A patient who may have been exposed to the Ebola virus is in isolation at the Kaiser Permanente South Sacramento Medical Center. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Reasons Why Teen Birth Rates Are At An All-Time Low

Reasons Why Teen Birth Rates Are At An All-Time Low

Newsy (Aug. 20, 2014) A CDC report says birth rates among teenagers have been declining for decades, reaching a new low in 2013. We look at several popular explanations. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins