Featured Research

from universities, journals, and other organizations

Using speed of video game processors to improve cancer patient care

Date:
May 2, 2014
Source:
UT Southwestern Medical Center
Summary:
The speed of video game processors are being used to promote research that is aimed at improving patient care, a new study says. In recent years, video game processors, known as graphic processing units, or GPUs, have become massively powerful as game makers support increasingly elaborate video graphics with rapid-fire processing. Now medical researchers are looking to these GPUs for inspiration. One practical application is reducing the time required to calculate the radiation dose delivered to a tumor during proton radiotherapy, for example. The faster video processors can reduce the time of the most complex calculation method from 70 hours to just 10 seconds.

Dr. Steve Jiang, UT Southwestern’s new director of the Division of Medical Physics and Engineering, and Professor and Vice Chairman of Radiation Oncology.
Credit: Image courtesy of UT Southwestern Medical Center

Medical physicists at UT Southwestern Medical Center are finding new ways to use the speed of video game processors to promote research that is aimed at improving patient care.

In recent years, video game processors, known as graphic processing units, or GPUs, have become massively powerful as game makers support increasingly elaborate video graphics. Medical experts took note of the GPU's rapid-fire processing. Among the pioneers seeking ways to apply the processing speed of GPUs to medical use is Dr. Steve Jiang, UT Southwestern's new Director of the Division of Medical Physics and Engineering, and Professor and Vice Chairman of Radiation Oncology.

One practical application is reducing the time required to calculate the radiation dose delivered to a tumor during proton radiotherapy, he said. The faster video processors can reduce the time of the most complex calculation method from 70 hours to just 10 seconds.

"That's an astonishing improvement in processing speed," Dr. Jiang said. "We should really thank video gamers. The popularity of video games has resulted in a tool that is very beneficial for scientific computing in medicine. The quicker results mean increased convenience for patients and physicians, and translate in a significant way to better patient care," he said.

Radiotherapy is often delivered in many treatments that can span weeks, during which time the patient's anatomy or the tumor itself can change. Dr. Jiang's highly efficient calculation allows for more accurate treatment plans based on daily calculations that are adapted to changes in the patient's daily geometry (such as weight, size and shape of the tumor), as well as the healthy tissue around the tumor. With the faster processor, doctors can make calculations before each treatment, instead of re-using older data, and new calculations can make the treatments more exact, sparing surrounding healthy tissue.

"The main idea is to change the way we treat patients," Dr. Jiang said. "If someone has a cancer, you want to treat the disease immediately and precisely. The current slower calculations require patients to wait for about a week to receive the first radiation treatment after consulting with doctors."

Although video games may seem to offer little beyond entertainment, the consumer demand was so intense that game developers created better, faster, and cheaper processors for video games than for any other applications.

"Market forces are strong and act much quicker than federal or state research funding mechanisms," Dr. Jiang said.


Story Source:

The above story is based on materials provided by UT Southwestern Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

UT Southwestern Medical Center. "Using speed of video game processors to improve cancer patient care." ScienceDaily. ScienceDaily, 2 May 2014. <www.sciencedaily.com/releases/2014/05/140502081209.htm>.
UT Southwestern Medical Center. (2014, May 2). Using speed of video game processors to improve cancer patient care. ScienceDaily. Retrieved August 1, 2014 from www.sciencedaily.com/releases/2014/05/140502081209.htm
UT Southwestern Medical Center. "Using speed of video game processors to improve cancer patient care." ScienceDaily. www.sciencedaily.com/releases/2014/05/140502081209.htm (accessed August 1, 2014).

Share This




More Computers & Math News

Friday, August 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services


Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins