Featured Research

from universities, journals, and other organizations

New method for measuring the temperature of nanoscale objects discovered

Date:
May 4, 2014
Source:
University of Exeter
Summary:
Pioneering research has now developed a method to accurately measure the surface temperature of nanoscale objects when they have a different temperature than their environment.

Temperature measurements in our daily life are typically performed by bringing a thermometer in contact with the object to be measured. However, measuring the temperature of nanoscale objects is a much more tricky task due to their size -- up to a thousand times smaller than the width of a human hair.

Pioneering research, published in Nature Nanotechnology, has now developed a method to accurately measure the surface temperature of nanoscale objects when they have a different temperature than their environment. A team led by Dr Janet Anders at the University of Exeter and Professor Peter Barker at University College London have discovered that the surface temperatures of nanoscale objects can be determined from analysing their jittery movement in air -- known as Brownian motion.

"This motion is caused by the collisions with the air molecules" said Dr Anders, a quantum information theorist and member of the Physics and Astronomy department at the University of Exeter. "We found that the impact of such collisions carries information about the object's surface temperature, and have used our observation of its Brownian motion to identify this information and infer the temperature."

The scientists conducted their research by trapping a glass nanosphere in a laser beam and suspending it in air. The sphere was then heated and it was possible to observe rising temperatures on the nanoscale until the glass got so hot that it melted. This technique could even discern different temperatures across the surface of the tiny sphere.

"When working with objects on the nanoscale, collisions with air molecules make a big difference," says Dr. James Millen from the team at University College London. "By measuring how energy is transferred between nanoparticles and the air around them we learn a lot about both."

Accurate knowledge of temperature is needed in many nanotechnological devices because their operation strongly depends on temperature. The discovery also informs current research which is working towards bringing large objects into a quantum superposition state. It further impacts on the study of aerosols in the atmosphere and opens the door for the study of processes that are out of equilibrium in a controlled setting.

Brownian motion is named after the Scottish botanist Robert Brown who, in 1827, noted that pollen move through water even when the water is perfectly still. Albert Einstein published a paper in 1905 that explained in precise detail how this movement was a result of the pollen being pushed by individual water molecules, eventually leading to the acceptance of the atomistic nature of all matter in science.


Story Source:

The above story is based on materials provided by University of Exeter. Note: Materials may be edited for content and length.


Journal Reference:

  1. J. Millen, T. Deesuwan, P. Barker, J. Anders. Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere. Nature Nanotechnology, 2014; DOI: 10.1038/nnano.2014.82

Cite This Page:

University of Exeter. "New method for measuring the temperature of nanoscale objects discovered." ScienceDaily. ScienceDaily, 4 May 2014. <www.sciencedaily.com/releases/2014/05/140504133201.htm>.
University of Exeter. (2014, May 4). New method for measuring the temperature of nanoscale objects discovered. ScienceDaily. Retrieved August 2, 2014 from www.sciencedaily.com/releases/2014/05/140504133201.htm
University of Exeter. "New method for measuring the temperature of nanoscale objects discovered." ScienceDaily. www.sciencedaily.com/releases/2014/05/140504133201.htm (accessed August 2, 2014).

Share This




More Matter & Energy News

Saturday, August 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Tesla, Panasonic Ink Deal To Make Huge Battery 'Gigafactory'

Tesla, Panasonic Ink Deal To Make Huge Battery 'Gigafactory'

Newsy (July 31, 2014) The deal will help build a massive battery factory that Tesla says will produce 500,000 lithium batteries by 2020. Video provided by Newsy
Powered by NewsLook.com
Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
7 Ways to Use Toothpaste: Howdini Hacks

7 Ways to Use Toothpaste: Howdini Hacks

Howdini (July 30, 2014) Fresh breath and clean teeth are great, but have you ever thought, "my toothpaste could be doing more". Well, it can! Lots of things! Howdini has 7 new uses for this household staple. Video provided by Howdini
Powered by NewsLook.com
Smoked: 2015 Ducati Diavel Vs 2014 Chevy Corvette Stingray Drag Race

Smoked: 2015 Ducati Diavel Vs 2014 Chevy Corvette Stingray Drag Race

Cycle World (July 30, 2014) The Bonnier Motorcycle Group presents Smoked; a three part video series. In this episode the 2015 Ducati Diavel takes on the 2014 Chevy Corvette Stingray Video provided by Cycle World
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins