Featured Research

from universities, journals, and other organizations

Tracking the chemical calling card of a killer stroke: New research hopes to decode molecular messages in brain

Date:
May 6, 2014
Source:
Ohio State University Center for Clinical and Translational Science
Summary:
It’s been called a “thunderclap” headache – a sudden intense pain that’s the hallmark of a rare but usually deadly type of stroke called a subarachnoid hemorrhage (SAH). If the initial event doesn’t kill, as many as 30% of patients will suffer further strokes within two weeks from a blockage caused by blood vessels in spasm. Now, a neurosurgeon is hoping to someday prevent these secondary strokes by decoding – and harnessing - the frenzied molecular messages produced by a stroke-choked brain.

The classic "star pattern" of a subarachnoid hemorrhage (SAH) - a rare type of stroke that is fatal in 50% all cases. Scientists are trying to identify biomarkers that could predict and improve SAH outcomes.
Credit: Ciaran Powers, MD, PhD, Ohio State University Wexner Medical Center

It's been described as a "thunderclap" headache. A sudden, blinding pain that's so intense that almost anyone who experiences it usually finds themselves in an emergency room. The pain is the hallmark of a very rare, but unusually deadly type of stroke called a subarachnoid hemorrhage (SAH), the result of ruptured blood vessels leaking blood between the skull and brain and around the brain stem. These strokes -usually caused by blood vessel malformations or aneurysms -- are fatal 50% of the time.

The danger however, doesn't end there, according to Ciaran Powers, MD, PhD, a neurosurgeon at The Ohio State University Wexner Medical Center who specializes in treating patients with SAHs.

"Of those patients who survive the initial hemorrhage, 30% will go on to have a secondary stroke within two weeks of the initial event, which can cause further disability or death," said Powers. "We don't know exactly why these delayed strokes happen, or who will get them."

Scientists know that the secondary strokes, called delayed cerebral ischemia (DCI), are caused by spasms in brain blood vessels that block blood flow. Physicians have therapies and surgery that can help SAH patients who have this delayed stroke, but Powers is looking for a way to stop DCIs before they can even happen.

"My goal is to decode the biological processes in the brain that trigger the DCIs. Then we can identify high-risk patients and step up our interventions, or if a patient is at less risk, we could get them out of the ICU and into a step down unit a little sooner," said Powers.

65 year-old Eileen Marcon and her family are familiar with the agonizing time spent in the ICU waiting to see if a secondary stroke will strike. Last year, Marcon, was getting ready for bed when she says she felt a pop of fluid in her head. It was a ruptured aneurysm.

"There was no pain, but I knew immediately I had to get to a hospital," she recalled.

Marcon remembers sitting in the ER waiting room, and then being in physical therapy -- but has no recollection of the three weeks in between. Powers had stopped the bleed, but the hemorrhage wiped out her memories, which is common among SAH patients. While she was still in the ICU, Marcon's husband, a scientist, enrolled her in Powers' study, recognizing the value of having a tool to predict secondary strokes.

To identify patients at risk for DCI, Powers is studying the quantities of micro-RNAs that are created in the hours and days after a hemorrhage to see if he can identify biomarkers that could help predict the delayed stroke. Micro-RNAs are tiny snippets of non-coding DNA that turn off the production of proteins created by genes, proteins that tell cells what to do.

"During a hemorrhage like this, one can only imagine the biochemical chaos taking place. Brain cells are dying from lack of oxygen, blood is mixing with spinal fluid, genes and cells are firing off all kinds of distress signals. Maybe some of the messages get mixed up and hurt instead of help," said Powers.

In a small study, supported by Ohio State's Center for Clinical and Translational Science (CCTS) Davis Bremer Pilot Award, Powers identified more than 140 micro-RNAs that are present in the spinal fluid of eight patients who had an SAH followed by DCI. He categorized the micro-RNAs into abundance patterns, compared them with normal controls, and then focused on a handful of micro-RNAs that literally leapt out of the pack.

"Some of these micro-RNAs shoot up immediately after a stroke and then level out, others start low and then go up. We found three micro-RNAs, all connected to dysfunctions in neurological remodeling and repair, that increase as much as 100-fold, so we have a compelling place to start looking," says Powers.

The CCTS pilot study findings helped Powers secure a grant from the Brain Aneurysm Foundation and a Young Clinician Investigator Award from The Neurosurgery Research and Education Foundation (NREF) of the American Association of Neurosurgeons.

Powers is planning expand his study size and is partnering with another CCTS-funded stroke investigator who developed an animal model of ischemia in order to analyze micro-RNA released in brain tissues at the precise area around a blocked blood vessel. He still has blood samples from his pilot study participants to examine, as they may also contain other types of biomarkers that could help him predict post-SAH events.

The momentum behind the research is good news for Powers, who says that he has more questions now than when he started.

"Do these micro-RNAs have a mechanistic role in causing the delayed event, or are they simply biomarkers? Where are these micro-RNAs even coming from -- the blood in spinal fluid or the brain itself? Just the answer to one of those questions would advance our knowledge of SAH dramatically."

Today, Marcon has made a full recovery and didn't sustain any long-term effects from the hemorrhage. She says she knows the ordeal was especially difficult for her husband and their five children who had to sit by her bedside knowing that one of these delayed strokes could strike at any time. Fortunately, it did not.

"It must have been hell for them, not knowing if I would be alive the next hour or the next day," said Marcon. "Dr. Powers saved my life, so I was happy to participate in his study. If I could spare one person or one family the pain of not knowing, that would be just great."


Story Source:

The above story is based on materials provided by Ohio State University Center for Clinical and Translational Science. Note: Materials may be edited for content and length.


Cite This Page:

Ohio State University Center for Clinical and Translational Science. "Tracking the chemical calling card of a killer stroke: New research hopes to decode molecular messages in brain." ScienceDaily. ScienceDaily, 6 May 2014. <www.sciencedaily.com/releases/2014/05/140506094443.htm>.
Ohio State University Center for Clinical and Translational Science. (2014, May 6). Tracking the chemical calling card of a killer stroke: New research hopes to decode molecular messages in brain. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2014/05/140506094443.htm
Ohio State University Center for Clinical and Translational Science. "Tracking the chemical calling card of a killer stroke: New research hopes to decode molecular messages in brain." ScienceDaily. www.sciencedaily.com/releases/2014/05/140506094443.htm (accessed July 28, 2014).

Share This




More Health & Medicine News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Ebola Virus Threatens West Africa

Deadly Ebola Virus Threatens West Africa

AP (July 28, 2014) West African nations and international health organizations are working to contain the largest Ebola outbreak in history. It's one of the deadliest diseases known to man, but the CDC says it's unlikely to spread in the U.S. (July 28) Video provided by AP
Powered by NewsLook.com
$15B Deal on Vets' Health Care Reached

$15B Deal on Vets' Health Care Reached

AP (July 28, 2014) A bipartisan deal to improve veterans health care would authorize at least $15 billion in emergency spending to fix a veterans program scandalized by long patient wait times and falsified records. (July 28) Video provided by AP
Powered by NewsLook.com
Two Americans Contract Ebola in Liberia

Two Americans Contract Ebola in Liberia

Reuters - US Online Video (July 28, 2014) Two American aid workers in Liberia test positive for Ebola while working to combat the deadliest outbreak of the virus ever. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins