Featured Research

from universities, journals, and other organizations

Rotational X-ray tracking uncovers hidden motion at the nanoscale

Date:
May 9, 2014
Source:
International Union of Crystallography
Summary:
Over the past two decades or so, there has been increasing interest and development in measuring slow dynamics in disordered systems at the nanoscale, brought about in part from a demand for advancements in the food and consumer products industries.

Scientists have developed a new technique called rotational X-ray tracking (RXT).
Credit: Image courtesy of International Union of Crystallography

Over the past two decades or so, there has been increasing interest and development in measuring slow dynamics in disordered systems at the nanoscale, brought about in part from a demand for advancements in the food and consumer products industries.

Related Articles


Some of the techniques that have been developed over recent years to study the dynamic properties of these materials include X-ray photon correlation spectroscopy (XPCS) and speckle visibility spectroscopy (SVS). Both of these techniques however suffer from some fundamental limitations ranging from the use of only specialized X-ray facilities to the actual nanoscale resolution required of the technique.

Scientists at the University of Illinois at Urbana-Champaign, USA; Argonne National Lab, USA; Centre for Free-Electron Laser Science, Hamburg, Germany and University College London, UK have developed a new technique called rotational X-ray tracking (RXT). The researchers were successful in demonstrating the power of the new technique by using it to study small crystalline particles immobilized by the fact they form a colloidal gel under certain conditions. One might think of the gel as being an immobile colloidal dispersion. However, the scientists were able to show how the particles in the colloidal gel actually undergo angular motion and the precise nature of the rotational motion is a unique measure of the nanoscale elastic properties of the gel network under examination. These findings open up a whole new class of dynamical systems and materials.

Even though RXT requires a relatively high flux X-ray beam it does not require a coherent X-ray beam as in XPCS and SVS, thus making it a more accessible technique for researchers. Flexibility in the size of particles is also possible depending on the nature of the X-ray source and volume fraction of the particles.


Story Source:

The above story is based on materials provided by International Union of Crystallography. Note: Materials may be edited for content and length.


Journal Reference:

  1. Mengning Liang, Ross Harder, Ian K. Robinson. Brownian motion studies of viscoelastic colloidal gels by rotational single particle tracking. IUCrJ, 2014; 1 (3): 172 DOI: 10.1107/S2052252514006022

Cite This Page:

International Union of Crystallography. "Rotational X-ray tracking uncovers hidden motion at the nanoscale." ScienceDaily. ScienceDaily, 9 May 2014. <www.sciencedaily.com/releases/2014/05/140509110750.htm>.
International Union of Crystallography. (2014, May 9). Rotational X-ray tracking uncovers hidden motion at the nanoscale. ScienceDaily. Retrieved March 6, 2015 from www.sciencedaily.com/releases/2014/05/140509110750.htm
International Union of Crystallography. "Rotational X-ray tracking uncovers hidden motion at the nanoscale." ScienceDaily. www.sciencedaily.com/releases/2014/05/140509110750.htm (accessed March 6, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, March 6, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Driverless Budii Gives the Wheel Feel

Driverless Budii Gives the Wheel Feel

Reuters - Business Video Online (Mar. 6, 2015) The Rinspeed Budii Concept car is creating a driverless stir at this year&apos;s Geneva car show. It&apos;s an all-electric autonomous vehicle with a difference. Ciara Lee reports. Video provided by Reuters
Powered by NewsLook.com
Star Wars Inspires Mobile Holograms

Star Wars Inspires Mobile Holograms

Reuters - Business Video Online (Mar. 6, 2015) 3D holograms could soon be coming to your mobile phone. Inspired by the famous Princess Leia hologram from Star Wars, a U.S. company is showcasing a prototype display at the Mobile World Congress at Barcelona and says it could be used for real-time video calls. Ivor Bennett reports Video provided by Reuters
Powered by NewsLook.com
Game Makers Lured Into Virtual Worlds

Game Makers Lured Into Virtual Worlds

AFP (Mar. 6, 2015) Some 25,000 people have descended upon San Francisco to show off the latest technologies and video games at the Game Developers Conference. Developers here discuss the future of the industry. Duration: 02:20. Video provided by AFP
Powered by NewsLook.com
Gas Production Cut on Earthquake Fears

Gas Production Cut on Earthquake Fears

Reuters - Business Video Online (Mar. 5, 2015) The Dutch government has cut production at Europe&apos;s largest gas field in Groningen amid concerns over earthquakes which are damaging local churches. As Amy Pollock reports the decision - largely politically-motivated - could have big economic conseqeunces. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins