Featured Research

from universities, journals, and other organizations

Broadening the scope for synthesizing optically active compounds

Date:
May 9, 2014
Source:
Organization of Frontier Science and Innovation, Kanazawa University
Summary:
Chiral compounds are increasingly important in chemical manufacturing. They are distinguished by a special kind of asymmetry in their molecular structure. Scientists have now developed a method for desymmetrizing compounds to produce new chiral molecules. The process allows 99% selectivity in the chemicals produced.

Credit: Image courtesy of Organization of Frontier Science and Innovation, Kanazawa University

Chiral compounds are increasingly important in chemical manufacturing. They are distinguished by a special kind of asymmetry in their molecular structure.

Related Articles


Yutaka Ukaji and colleagues at Kanazawa University have now developed a method for desymmetrising compounds to produce new chiral molecules. The process allows 99% selectivity in the chemicals produced.

The property of chirality is defined by the existence of distinct mirror image geometric arrangements of the constituent parts of a molecule, known as stereoisomers. Just as your right hand cannot be directly superimposed on the left, if the molecule is chiral the mirror images cannot be directly superimposed. Chiral compounds are often described as optically active as one stereoisomer will rotate the plane of incident polarised light to the left and the other will rotate it to the right.

Desymmetrisation methods to produce chiral compounds exist but the range of compounds amenable to the approach remains limited. Ukaji and his colleagues focused on a type of organic compound known as divinyl carbinols -- where the vinyl group describes an ethylene molecular group and the carbinol describes an alcohol derived from methanol. Desymmetrisation of divinyl carbinols can provide new optically active alcohol derivatives that contain useful functional groups for further chemical transformations.

The approach developed by the Kanazawa team built on previous work demonstrating an asymmetric 'cycloaddition' reaction where compounds with unsaturated (double, triple etc) bonds combine forming a ring. Their current work demonstrates the reaction on divinyl carbinols with selective production of one mirror image product over the other of over 99%.

They conclude in their report on the work, "This method would be useful for the preparation of optically active nitrogen- and oxygen containing chemicals."


Story Source:

The above story is based on materials provided by Organization of Frontier Science and Innovation, Kanazawa University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Mari Yoshida, Naotaro Sassa, Tomomitsu Kato, Shuhei Fujinami, Takahiro Soeta, Katsuhiko Inomata, Yutaka Ukaji. Desymmetrization of 1,4-Pentadien-3-ol by the Asymmetric 1,3-Dipolar Cycloaddition of Azomethine Imines. Chemistry - A European Journal, 2014; 20 (7): 2058 DOI: 10.1002/chem.201302889

Cite This Page:

Organization of Frontier Science and Innovation, Kanazawa University. "Broadening the scope for synthesizing optically active compounds." ScienceDaily. ScienceDaily, 9 May 2014. <www.sciencedaily.com/releases/2014/05/140509131559.htm>.
Organization of Frontier Science and Innovation, Kanazawa University. (2014, May 9). Broadening the scope for synthesizing optically active compounds. ScienceDaily. Retrieved December 17, 2014 from www.sciencedaily.com/releases/2014/05/140509131559.htm
Organization of Frontier Science and Innovation, Kanazawa University. "Broadening the scope for synthesizing optically active compounds." ScienceDaily. www.sciencedaily.com/releases/2014/05/140509131559.htm (accessed December 17, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Wednesday, December 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How Sony Hopes To Make Any Glasses 'Smart'

How Sony Hopes To Make Any Glasses 'Smart'

Newsy (Dec. 17, 2014) Sony's glasses module attaches to the temples of various eye- and sunglasses to add a display and wireless connectivity. Video provided by Newsy
Powered by NewsLook.com
Los Angeles Police To Receive 7,000 Body Cameras

Los Angeles Police To Receive 7,000 Body Cameras

Newsy (Dec. 17, 2014) Los Angeles Mayor Eric Garcetti announced the cameras will be distributed starting Jan. 1. Video provided by Newsy
Powered by NewsLook.com
Researchers Bring Player Pianos Back to Life

Researchers Bring Player Pianos Back to Life

AP (Dec. 17, 2014) Stanford University wants to unlock the secrets of the player piano. Researchers are restoring and studying self-playing pianos and the music rolls that recorded major composers performing their own work. (Dec. 17) Video provided by AP
Powered by NewsLook.com
France's Sauternes Wine Threatened by New Train Line

France's Sauternes Wine Threatened by New Train Line

AFP (Dec. 16, 2014) Winemakers in southwestern France's Bordeaux are concerned about a proposed high speed train line that could affect the microclimate required for the region's sweet wine. Duration: 01:06 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins