Featured Research

from universities, journals, and other organizations

Broadening the scope for synthesizing optically active compounds

Date:
May 9, 2014
Source:
Organization of Frontier Science and Innovation, Kanazawa University
Summary:
Chiral compounds are increasingly important in chemical manufacturing. They are distinguished by a special kind of asymmetry in their molecular structure. Scientists have now developed a method for desymmetrizing compounds to produce new chiral molecules. The process allows 99% selectivity in the chemicals produced.

Credit: Image courtesy of Organization of Frontier Science and Innovation, Kanazawa University

Chiral compounds are increasingly important in chemical manufacturing. They are distinguished by a special kind of asymmetry in their molecular structure.

Yutaka Ukaji and colleagues at Kanazawa University have now developed a method for desymmetrising compounds to produce new chiral molecules. The process allows 99% selectivity in the chemicals produced.

The property of chirality is defined by the existence of distinct mirror image geometric arrangements of the constituent parts of a molecule, known as stereoisomers. Just as your right hand cannot be directly superimposed on the left, if the molecule is chiral the mirror images cannot be directly superimposed. Chiral compounds are often described as optically active as one stereoisomer will rotate the plane of incident polarised light to the left and the other will rotate it to the right.

Desymmetrisation methods to produce chiral compounds exist but the range of compounds amenable to the approach remains limited. Ukaji and his colleagues focused on a type of organic compound known as divinyl carbinols -- where the vinyl group describes an ethylene molecular group and the carbinol describes an alcohol derived from methanol. Desymmetrisation of divinyl carbinols can provide new optically active alcohol derivatives that contain useful functional groups for further chemical transformations.

The approach developed by the Kanazawa team built on previous work demonstrating an asymmetric 'cycloaddition' reaction where compounds with unsaturated (double, triple etc) bonds combine forming a ring. Their current work demonstrates the reaction on divinyl carbinols with selective production of one mirror image product over the other of over 99%.

They conclude in their report on the work, "This method would be useful for the preparation of optically active nitrogen- and oxygen containing chemicals."


Story Source:

The above story is based on materials provided by Organization of Frontier Science and Innovation, Kanazawa University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Mari Yoshida, Naotaro Sassa, Tomomitsu Kato, Shuhei Fujinami, Takahiro Soeta, Katsuhiko Inomata, Yutaka Ukaji. Desymmetrization of 1,4-Pentadien-3-ol by the Asymmetric 1,3-Dipolar Cycloaddition of Azomethine Imines. Chemistry - A European Journal, 2014; 20 (7): 2058 DOI: 10.1002/chem.201302889

Cite This Page:

Organization of Frontier Science and Innovation, Kanazawa University. "Broadening the scope for synthesizing optically active compounds." ScienceDaily. ScienceDaily, 9 May 2014. <www.sciencedaily.com/releases/2014/05/140509131559.htm>.
Organization of Frontier Science and Innovation, Kanazawa University. (2014, May 9). Broadening the scope for synthesizing optically active compounds. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2014/05/140509131559.htm
Organization of Frontier Science and Innovation, Kanazawa University. "Broadening the scope for synthesizing optically active compounds." ScienceDaily. www.sciencedaily.com/releases/2014/05/140509131559.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com
U.K. To Allow Driverless Cars On Public Roads

U.K. To Allow Driverless Cars On Public Roads

Newsy (July 30, 2014) Driverless cars could soon become a staple on U.K. city streets, as they're set to be introduced to a few cities in 2015. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins