Featured Research

from universities, journals, and other organizations

Astronomy: Revealing the complex outflow structure of binary UY Aurigae

Date:
May 21, 2014
Source:
National Astronomical Observatory of Japan
Summary:
Astronomers have revealed a complicated outflow structure in the binary UY Aur (Aurigae). The team observed the binary using the Gemini North"s NIFS (Near-Infrared Integral Field Spectrometer) with the Altair adaptive optics system. They found that the primary star has a wide, open outflow, while the secondary star has a well-collimated jet.

Schematic drawings of the UY Aur binary. Redshifted (right) and blueshifted (left) outflows. The primary star shows wide, open, redshifted and blueshifted outflows as well as a redshifted jet (in solid red), while the secondary star shows a blueshifted jet (in solid blue).
Credit: Image courtesy of National Astronomical Observatory of Japan

An international team of astronomers, led by Dr. Tae-Soo Pyo (Subaru Telescope, NAOJ), has revealed a complicated outflow structure in the binary UY Aur (Aurigae). The team observed the binary using the Gemini North"s NIFS (Near-Infrared Integral Field Spectrometer) with the Altair adaptive optics system. The team found that the primary star has a wide, open outflow, while the secondary star has a well-collimated jet.

Related Articles


Because many stars form together as companions in binary or multiple systems, investigating these systems is essential for understanding star and planet formation. Although jets (i.e., narrow bright streams of gas) and outflows (i.e., less collimated flows of gas) from single young stars are ubiquitous, only a few observations have shown jets or outflows from multiple, low-mass young stars. Therefore, the current team chose to examine the outflow structure of binary UY Aur, which is a close binary system composed of young stars separated by less than an arcsecond (0." 89).

UY Aur has a very complicated structure. Both the primary star (UY Aur A, more masive and brighter) and the secondary star (UY Aur B, fainter and cooler) have small circumstellar disks (disks of gas and material orbiting around them). In addition, a circumbinary disk of the type that has been resolved and imaged . Receding ("redshifted") jets have been observed, and approaching ("blueshifted") ones have been reported for this system. However, their driving sources are not clear, because the spatial resolution of the images was too low (> one arcsecond).

To better understand this system, the team began by trying to identify the driving source of the receding jets. To separate the binary stars and distinguish their driving sources, they used Gemini North's NIFS with its adaptive optics system to observe this close binary system in the 1-micrometer infrared wavelength region. Since ionized iron gas ([Fe II]) traces shocked gas in jets and outflows very well, the team used iron gas emissions to examine the emission gas distribution. They found that [Fe II] is associated with both the primary and the secondary stars.

In addition, they found that the shape of the gas distribution conformed to simulations of gas streaming between the primary and secondary stars. However, the high velocity of the gas (100 km/s or > 20,000 mile/h) indicated that it emanated from the close vicinity of stars rather than arose in the disk gas around the two stars.

Further investigation of the emission structure involved separation of the receding and approaching emissions. The team found that the distribution of gas was different for each of the stars. While the approaching gas was widely spread in an outflow from the primary star and slightly connected with the secondary star, the receding gas was spread widely toward the secondary star and flowing beyond it.

What explains this difference? The team analyzed the system in terms of bipolar outflow, i.e., each star has a disk and ejects both blueshifted (approaching) and redshifted (receding) outflows or jets. The primary ejects wide, open bipolar outflows. Its redshifted (receding) outflow overlaps with the secondary. In contrast, the approaching gas from the secondary is distributed in a well-collimated bipolar jet, with its blueshifted flow tilted toward the wide, open wind from the primary. It is known from mid-infrared (wavelength of ~10 micrometer) observations that the circumstellar disk of the secondary is not aligned with the plane of the circumbinary disk. This misalignment is consistent with jet from the secondary tilted toward the wide, open outflow from the primary star.

Two jets from a binary system can be explained if the jets emanate from each of the star-disk system. Some binaries show only one jet or outflow. A larger sample of [Fe II] gas distribution toward binary and multiple young-star systems can clarify how typical the outflow structure of the UY Aur system is.


Story Source:

The above story is based on materials provided by National Astronomical Observatory of Japan. Note: Materials may be edited for content and length.


Journal Reference:

  1. Tae-Soo Pyo, Masahiko Hayashi, Tracy Beck, Christopher J. Davis, Michihiro Takami. [Fe II] emissions associated with the young interacting binary UY Aurige. Astrophysical Journal, Volume 786, 63, 2014 [link]

Cite This Page:

National Astronomical Observatory of Japan. "Astronomy: Revealing the complex outflow structure of binary UY Aurigae." ScienceDaily. ScienceDaily, 21 May 2014. <www.sciencedaily.com/releases/2014/05/140521094749.htm>.
National Astronomical Observatory of Japan. (2014, May 21). Astronomy: Revealing the complex outflow structure of binary UY Aurigae. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2014/05/140521094749.htm
National Astronomical Observatory of Japan. "Astronomy: Revealing the complex outflow structure of binary UY Aurigae." ScienceDaily. www.sciencedaily.com/releases/2014/05/140521094749.htm (accessed October 25, 2014).

Share This



More Space & Time News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: China Launches Moon Orbiter

Raw: China Launches Moon Orbiter

AP (Oct. 24, 2014) China launched an experimental spacecraft Friday to fly around the moon and back to Earth in preparation for the country's first unmanned return trip to the lunar surface. (Oct. 24) Video provided by AP
Powered by NewsLook.com
China Prepares Unmanned Mission To Lunar Orbit

China Prepares Unmanned Mission To Lunar Orbit

Newsy (Oct. 23, 2014) The mission is China's next step toward automated sample-return missions and eventual manned missions to the moon. Video provided by Newsy
Powered by NewsLook.com
Russian Cosmonauts Kick Off Final Spacewalk of 2014

Russian Cosmonauts Kick Off Final Spacewalk of 2014

Reuters - US Online Video (Oct. 22, 2014) Russian cosmonauts Maxim Suraev and Alexander Samokutyaev step outside the International Space Station to perform work on the exterior of the station's Russian module. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com
Comet Siding Spring Grazes Mars' Atmosphere

Comet Siding Spring Grazes Mars' Atmosphere

Newsy (Oct. 19, 2014) A comet from the farthest reaches of the solar system passed extremely close to Mars this weekend, giving astronomers a rare opportunity to study it. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins