Featured Research

from universities, journals, and other organizations

Protective proteins reduce damage to blood vessels

Date:
May 21, 2014
Source:
Biotechnology and Biological Sciences Research Council
Summary:
Proteins found in our blood can reduce damage caused to blood vessels as we age, and in conditions such as atherosclerosis and arthritis, new research finds. Calcification is a major risk factor for heart attack and stroke. Blood vessels can harden as calcium phosphate (CaP) crystals, normally found in bones and teeth, build up in soft tissue as we age or as a result of illness. This can lead to complications in patients with atherosclerosis, a major cause of death whereby arteries thicken and are at risk of becoming blocked.

Calcium phosphate crystals (needle-shaped, indicated by arrows) being engulfed by a human vascular smooth muscle cell (SMC).
Credit: Babraham Institute

Researchers have uncovered how proteins found in our blood can reduce damage caused to blood vessels as we age, and in conditions such as atherosclerosis and arthritis.

Calcification is a major risk factor for heart attack and stroke. Blood vessels can harden as calcium phosphate (CaP) crystals, normally found in bones and teeth, build up in soft tissue as we age or as a result of illness. This can lead to complications in patients with atherosclerosis, a major cause of death in the UK whereby arteries thicken and are at risk of becoming blocked.

However a team of scientists at the BBSRC-funded Babraham Institute has discovered how CaP damages vessels, and how proteins normally found in our circulation can help prevent this process.

In the study funded by the British Heart Foundation, researchers found that small CaP crystals were being consumed by blood vessel cells, resulting in abnormally high levels of calcium ions, which can prove toxic.

They discovered that two proteins in the blood, fetuin-A and albumin, can slow down the uptake of CaP crystals by blood vessel cells, reducing the release of calcium ions and protecting against damage.

Dr Diane Proudfoot, who led the study, explained: "Small changes in calcium levels within a cell controls many aspects of normal cell function. However, when calcium levels become excessive, the cell can die. By delaying the uptake of these crystals and reducing the release of calcium ions, proteins fetuin-A and albumin can help to keep calcium ions at a safe level."

The research, published today in the journal PLOS ONE, offers potential to develop treatments to prevent and reduce the damaging effects of CaP crystals.

Dr Proudfoot added: "Interestingly, lower levels of these proteins have been observed in patients with chronic kidney disease who can suffer a higher level of mortality due to cardiovascular disease. In the future, there is potential to use fetuin-A that has been artificially created or extracted from blood as a treatment for patients with low levels of this protein."

Professor Melanie Welham, BBSRC Executive Director for Science, said: "BBSRC-funded science helps us to explore the biological processes that underpin our health. This research provides important insights into healthy aging and may lead to therapeutic strategies to prevent the problems associated with calcification in aging and several diseases."


Story Source:

The above story is based on materials provided by Biotechnology and Biological Sciences Research Council. Note: Materials may be edited for content and length.


Journal Reference:

  1. Yana Dautova, Diana Kozlova, Jeremy N. Skepper, Matthias Epple, Martin D. Bootman, Diane Proudfoot. Fetuin-A and Albumin Alter Cytotoxic Effects of Calcium Phosphate Nanoparticles on Human Vascular Smooth Muscle Cells. PLoS ONE, 2014; 9 (5): e97565 DOI: 10.1371/journal.pone.0097565

Cite This Page:

Biotechnology and Biological Sciences Research Council. "Protective proteins reduce damage to blood vessels." ScienceDaily. ScienceDaily, 21 May 2014. <www.sciencedaily.com/releases/2014/05/140521180026.htm>.
Biotechnology and Biological Sciences Research Council. (2014, May 21). Protective proteins reduce damage to blood vessels. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2014/05/140521180026.htm
Biotechnology and Biological Sciences Research Council. "Protective proteins reduce damage to blood vessels." ScienceDaily. www.sciencedaily.com/releases/2014/05/140521180026.htm (accessed July 22, 2014).

Share This




More Health & Medicine News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins