Featured Research

from universities, journals, and other organizations

Some pancreatic cancer treatments may be going after wrong targets

Date:
May 22, 2014
Source:
University of Michigan Health System
Summary:
New research represents a significant change in the understanding of how pancreatic cancer grows – and how it might be defeated. Unlike other types of cancer, pancreatic cancer produces a lot of scar tissue and inflammation. For years, researchers believed that this scar tissue, called desmoplasia, helped the tumor grow, and they’ve designed treatments to attack this. But new research finds that when you eliminate desmoplasia, tumors grow even more quickly and aggressively. In the study, mice in which the desmoplasia was eliminated developed tumors earlier and died sooner.

New research represents a significant change in the understanding of how pancreatic cancer grows – and how it might be defeated.

Unlike other types of cancer, pancreatic cancer produces a lot of scar tissue and inflammation. For years, researchers believed that this scar tissue, called desmoplasia, helped the tumor grow, and they’ve designed treatments to attack this.

But new research led by Andrew D. Rhim, M.D., from the University of Michigan Comprehensive Cancer Center, finds that when you eliminate desmoplasia, tumors grow even more quickly and aggressively. In the study, mice in which the desmoplasia was eliminated developed tumors earlier and died sooner.

“This flies in the face of 10 years of research,” says Rhim, assistant professor of gastroenterology at the U-M Medical School. “It turns out that desmoplasia is a lot more complex than previously thought. Components of this complex scar tissue may be the body’s natural defense against this cancer, acting as a barrier or fence to constrain cancer cells from growing and spreading. Researchers who have been trying to target desmoplasia to kill tumors may need to reevaluate their approach.”

Several drugs targeting desmoplasia are in clinical trials and one was recently stopped early because of poor results. “Our study explains why this didn’t work,” Rhim says.

The researchers were able to arrive at this surprising conclusion by using a better mouse model. Previous models have used mice with compromised immune systems injected with human pancreatic cancer cells, producing tumors that don’t closely resemble human pancreatic cancer. The current model utilizes mice that are genetically engineered to express the two most common genetic mutations seen in pancreatic cancer. The mice developed cancer spontaneously, and the cancer closely resembled human pancreatic cancer.

Results of the study appear in Cancer Cell. The work represents a collaboration among teams at the University of Pennsylvania, Columbia University, Johns Hopkins University, Memorial Sloan Kettering Cancer Center and Mayo Clinic.

Using genetically engineered mice, the researchers blocked desmoplasia by knocking down the signaling pathway that produces it. They discovered that desmoplasia prevents the formation of blood vessels that fuel the tumor. When it’s suppressed, the blood vessels multiply, giving the cancer cells the fuel to grow. The researchers next wondered: What if you then target blood vessels with treatment?

What they found in this study was that a drug designed to attack blood vessels, called an angiogenesis inhibitor, significantly improved overall survival in the mice who had desmoplasia blocked. Angiogenesis inhibitors already exist on the market with approval from the U.S. Food and Drug Administration.

Another key finding of the study is that eliminating desmoplasia created tumors that resembled undifferentiated pancreatic cancer in humans. Undifferentiated tumors lack desmoplasia, have abundant blood vessels and grow and spread quickly. About 10 percent of pancreatic cancers in patients are undifferentiated.

This suggests that angiogenesis inhibitors may be effective in patients with undifferentiated tumors.

This study suggests that patients with highly aggressive, undifferentiated pancreatic cancer may be good candidates for treatment with an angiogenesis inhibitor, a drug that is already approved by the U.S. Food and Drug Administration for other cancers. Researchers are moving toward developing a clinical trial. Plans for such an approach are currently underway.


Story Source:

The above story is based on materials provided by University of Michigan Health System. Note: Materials may be edited for content and length.


Journal Reference:

  1. AndrewD. Rhim, PaulE. Oberstein, DafyddH. Thomas, EmilyT. Mirek, CarmineF. Palermo, StephenA. Sastra, ErinN. Dekleva, Tyler Saunders, ClaudiaP. Becerra, IanW. Tattersall, C.Benedikt Westphalen, Jan Kitajewski, MaiteG. Fernandez-Barrena, MartinE. Fernandez-Zapico, Christine Iacobuzio-Donahue, KennethP. Olive, BenZ. Stanger. Stromal Elements Act to Restrain, Rather Than Support, Pancreatic Ductal Adenocarcinoma. Cancer Cell, 2014; DOI: 10.1016/j.ccr.2014.04.021

Cite This Page:

University of Michigan Health System. "Some pancreatic cancer treatments may be going after wrong targets." ScienceDaily. ScienceDaily, 22 May 2014. <www.sciencedaily.com/releases/2014/05/140522123352.htm>.
University of Michigan Health System. (2014, May 22). Some pancreatic cancer treatments may be going after wrong targets. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2014/05/140522123352.htm
University of Michigan Health System. "Some pancreatic cancer treatments may be going after wrong targets." ScienceDaily. www.sciencedaily.com/releases/2014/05/140522123352.htm (accessed July 29, 2014).

Share This




More Health & Medicine News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Generics Eat Into Pfizer's Sales

Generics Eat Into Pfizer's Sales

Reuters - Business Video Online (July 29, 2014) Pfizer, the world's largest drug maker, cut full-year revenue forecasts because generics could cut into sales of its anti-arthritis drug, Celebrex. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Nigeria Ups Ebola Stakes on 1st Death

Nigeria Ups Ebola Stakes on 1st Death

Reuters - Business Video Online (July 29, 2014) Nigerian authorities have shut and quarantined a Lagos hospital where a Liberian man died of the Ebola virus, the first recorded case of the highly-infectious disease in Africa's most populous economy. David Pollard reports Video provided by Reuters
Powered by NewsLook.com
Running 5 Minutes A Day Might Add Years To Your Life

Running 5 Minutes A Day Might Add Years To Your Life

Newsy (July 29, 2014) According to a new study, just five minutes of running or jogging a day could add years to your life. Video provided by Newsy
Powered by NewsLook.com
Ebola Outbreak Poses Little Threat To U.S.: CDC

Ebola Outbreak Poses Little Threat To U.S.: CDC

Newsy (July 29, 2014) The Ebola outbreak in West Africa poses little threat to Americans, according to officials with the Centers for Disease Control and Prevention. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins